Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010137-8    https://doi.org/10.11896/cldb.24010137
  高分子与聚合物基复合材料 |
高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究
鲍志超, 周雪松*
华南理工大学轻工科学与工程学院,广州 510641
Modification of Vinasse Biochar by Potassium Ferrate for Norfloxacin Adsorption
BAO Zhichao, ZHOU Xuesong*
School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 14975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对水体中威胁人类健康和水生生态的残留诺氟沙星(NOR)的去除问题,以酒糟为原料,通过高铁酸钾浸渍活化和高温炭化制备磁性多孔生物炭吸附材料(FIC-700)。以扫描电子显微镜(SEM)、比表面积测试法(BET)、傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱(XPS)和振动样品磁强计(VSM)等方法研究了生物炭的物理化学性质,测试结果表明高铁酸钾活化改性可有效改善生物炭的孔隙结构和提高其表面极性,对NOR的最大理论吸附量高达418.0 mg/g;高铁酸钾活化改性还可赋予其强磁性,使其易于回收,重复利用三次后仍能保持原吸附量的75%以上,有着优异的可重复利用性。吸附过程符合准一级动力学模型和Langmuir等温吸附模型,主要的吸附机理为孔隙填充、氢键、π-π电子供体-受体相互作用和表面络合作用。研究结果表明,酒糟经高铁酸钾活化改性以及适度炭化后所得磁性多孔生物碳材料有望作为一种高效去除废水中残存NOR的吸附材料,具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍志超
周雪松
关键词:  高铁酸钾  生物炭  酒糟  诺氟沙星  吸附    
Abstract: In this work, a kind of magnetic porous biochar adsorbent material (FIC-700) was prepared from vinasse via a sequential process of dipping by potassium ferrate and carbonization in N2 atmosphere to increase the removal efficiency of the residual norfloxacin (NOR) which is ha-zardous to human health and the aqueous eco-system from wastewater bodies. The physical and chemical properties of biochar were investigated by SEM, BET, FTIR, XPS, VSM, etc. Test results showed that the pore structure and surface polarity of the biochar could be effectively improved by the treatment of potassium ferrate, with the maximum theoretical adsorption capacity of NOR up to 418.0 mg/g. It was also endowed with strong magnetic properties, making it easy to recycle. After three cycles of reuse, it still maintained over 75% of its original adsorption capacity, demonstrating excellent reusability. The adsorption process conformed to the pseudo-first-order kinetic model and Langmuir isothermal adsorption model. The main adsorption mechanisms were pore filling, hydrogen bonding, π-π electron donor-acceptor interaction and surface comple-xation. Accordingly, such magnetic porous biochar material obtained from vinasse activated by potassium ferrate and carbonized at an appropriate temperature is supposed to be a kind of potential ideal adsorbent material for effective removal of residual NOR from wastewater.
Key words:  potassium ferrate    biochar    vinasse    norfloxacin (NOR)    adsorption
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TB34  
  X52  
基金资助: 广州市科技计划项目(202103000011)
通讯作者:  *周雪松,博士,华南理工大学轻工科学与工程学院副研究员、硕士研究生导师。主要从事天然高分子改性及其功能材料的研究。xszhou@scut.edu.cn   
作者简介:  鲍志超,华南理工大学轻工科学与工程学院硕士研究生,在周雪松副研究员的指导下进行研究。目前主要从事生物质基多孔炭材料的研究。
引用本文:    
鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
BAO Zhichao, ZHOU Xuesong. Modification of Vinasse Biochar by Potassium Ferrate for Norfloxacin Adsorption. Materials Reports, 2025, 39(4): 24010137-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010137  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010137
1 Chierentin L, Salgado H R N. Critical Reviews in Analytical Chemistry, 2016, 46(1), 22.
2 Huang F, An Z, Moran M J, et al. Journal of Hazardous Materials, 2020, 399, 122813.
3 Zhang G D, Lu S O, Wang Y Q, et al. Environmental Pollution, 2020, 257, 113365.
4 Wang L F, Wang Y F, Li H, et al. Journal of Environmental Management, 2022, 305, 114382.
5 Chen H Y, Jing L J, Teng Y G, et al. Science of the Total Environment, 2018, 618, 409.
6 Wang J X, Lu X N, Jing Q L, et al. Journal of Hazardous Materials, 2023, 454, 131409.
7 Yang X R, Chen Z, Zhao W, et al. Chemical Engineering Journal, 2021, 405, 126806.
8 Sun X X, Wang C C, Li Y H. Materials Reports, 2022, 36(20), 24 (in Chinese).
孙雪梓, 王崇臣, 李渝航. 材料导报, 2022, 36(20), 24.
9 Lv X, Yan D Y S, Lam F L, et al. Chemical Engineering Journal, 2020, 401, 126012.
10 Shankaraiah G, Poodari S, Bhagawan D, et al. Desalination and Water Treatment, 2016, 57(57), 27804.
11 Wang G, Yi Y Q, Huang L L, et al. Journal of Water Process Engineering, 2021, 40, 101799.
12 Wakudkar H, Jain S. Waste Management & Research, 2022, 40(8), 1143.
13 Subedi R, Taupe N, Ikoyi I, et al. Science of the Total Environment, 2016, 550, 924.
14 Aziz I, Bin B Z, Haider R, et al. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2), 3313.
15 Dang B, Ramaraj R, Huynh K, et al. Bioresource Technology, 2023, 375, 128830.
16 Zhang Y P, Zhang W B, Zhang H, et al. Molecules, 2023, 28(7), 3231.
17 Zhang Z, Wang Q J, Li L W, et al. Biomass and Bioenergy, 2020, 135, 105525.
18 Cheng J L, Li X, Xiao X, et al. Industrial Crops and Products, 2021, 173, 114080.
19 Hsu D, Lu C, Pang T, et al. Applied Sciences, 2019, 9(23), 5249.
20 Gao Q, He Y Y, Ni L M, et al. Industrial Crops and Products, 2024, 209, 117952.
21 Li X Y, Jiang Y Y, Chen T Y, et al. Environmental Geochemistry and Health, 2023, 45(6), 3331.
22 Wang Q J, Zhang Z, Xu G R, et al. Bioresource Technology, 2021, 327, 124818.
23 Yin Z B, Xu S, Liu S, et al. Bioresource Technology, 2020, 300, 122680.
24 Liang H G, Zhu C X, Ji S, et al. Biochar, 2022, 4(1), 3.
25 Lu W S, Shen Y H, Xie A J, et al. Journal of Magnetism and Magnetic Materials, 2010, 322(13), 1828.
26 He T, Zhou X S, Bao Z C, et al. Journal of Chemical Technology & Biotechnology, 2023, 98(8), 2039.
27 Liang S J, Chen K, Zhu J W, et al. Modern Chemical Industry, 2020, 40(2), 181 (in Chinese).
梁圣吉, 陈葵, 朱家文, 等. 现代化工, 2020, 40(2), 181.
28 Yan J R, Zuo X X, Yang S J, et al. Journal of Hazardous Materials, 2022, 424, 127435.
29 Guy L Z B L, Tang W, Chen J W. Environmental Research, 2022, 214, 113951.
30 Wan Y B, Liu X, Liu P L, et al. Science of the Total Environment, 2018, 639, 428.
31 Blanchard G, Maunaye M, Martin G. Water Research, 1984, 18(12), 1501.
32 Tran H N, You S, Hosseini-Bandegharaei A, et al. Water Research, 2017, 120, 88.
33 Weber W J, Morris J C. Journal of the Sanitary Engineering Division, 1963, 89(2), 31.
34 Kabir M M, Mouna S S P, Akter S, et al. Journal of Molecular Liquids, 2021, 322, 115012.
35 Langmuir I. Journal of the American Chemical Society, 1918, 40(9), 1361.
36 Leandro-Silva E, Pipi A, Magdalena A G, et al. Materia-rio De Janeiro, 2020, 25(2), 12656.
37 Ghanim B, Dwyer T F O, Leahy J J, et al. Journal of Environmental Chemical Engineering, 2020, 8(5), 104176.
38 Wang J P, Zhang M, Zhou R J, et al. Water Science and Technology, 2020, 82(2), 242.
39 Liu P L, Li H P, Liu X, et al. Journal of Dispersion Science and Technology, 2020, 41(2), 214.
40 Liu C, Wang Z Q, Hua S, et al. Separation and Purification Technology, 2023, 314, 123674.
41 Yu F, Liu Q, Yang Y, et al. Journal of Water Supply: Research and Technology - Aqua, 2018, 67(8), 703.
42 Lv M, Chen F, Zhang Z H, et al. Separation and Purification Technology, 2023, 315, 123643.
[1] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[2] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[3] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[4] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[5] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[6] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[7] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[8] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[9] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[10] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[11] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[12] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[13] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[14] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[15] 鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed