Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22010135-6    https://doi.org/10.11896/cldb.22010135
  金属与金属基复合材料 |
氯化物体系单槽双室电积锰工艺研究
李佳敏1,2, 常麟晖1,2, 陈步明1,2,3,*, 黄惠1,2,3, 郭忠诚1,2,3
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 云南省冶金电极材料工程技术研究中心,昆明 650106
3 昆明理工恒达科技股份有限公司,昆明 650106
Study of Mn Electrowinning Process in Chloride System with Single-tank and Double-chamber
LI Jiamin1,2, CHANG Linhui1,2, CHEN Buming1,2,3,*, HUANG Hui1,2,3, GUO Zhongcheng1,2,3
1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China;
2 Research Center of Metallurgical Electrode Materials Engineering Technology, Yunnan Province, Kunming 650106, China;
3 Kunming Hendera Science and Technology Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 13941KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作在单槽双室电解槽中采用氯盐电解质进行了电沉积锰的工艺研究。初步探索了带有亚氨基二乙酸官能团的螯合树脂TP-207对高Mn2+电解液中杂质离子的吸附除杂作用过程,提出了四种离子吸附模型;同时,确定了氯盐体系隔膜电积锰工艺参数,与传统硫酸盐体系和工艺进行了对比。结果表明:电解最佳条件为阴极液初始锰离子浓度(影响较小)0.9 mol/L;电解液温度越低,电流效率越高,最佳温度为5 ℃;阴极电流密度(影响一般)为450 A/m2;pH(影响很大)为弱酸性的6.5。在此最佳工艺条件下进行电解Mn时的电流效率可达83.211%,电耗最低为4 022.7 kW·h·t-1,对应的Mn产品晶型为γ型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳敏
常麟晖
陈步明
黄惠
郭忠诚
关键词:  氯盐体系  螯合树脂  吸附净化  电解锰  单槽双室    
Abstract: The processes of manganese electrodeposition in the chloride salt electrolyte system with a single-tank double-chamber electrolyzer were studied. The process of adsorption and decontamination of impurity ions in high Mn2+ electrolyte by chelating resin (TP-207) with imino-diacetic acid functional group was initially explored, and four ion adsorption models were proposed. The process parameters of manganese electrodeposition by diaphragm of chloride salt system were determined. Meanwhile, it was compared with the conventional sulfate system and process. The results show that: the best condition of electrolysis is that the initial concentration of manganese ions in cathode solution (with small influence) is 0.9 mol/L, the lower the temperature of electrolyte, the higher the electric efficiency, the best temperature is 5 ℃, the cathode current density (with general influence) is 450 A·m-2, and the pH (with great influence) is 6.5 of weak acidity. The current efficiency obtained under this best process condition reach to 83.211%, and the lowest electric consumption is 4 022.7 kW·h·t-1, the corresponding Mn product crystalline type is γ-type.
Key words:  chlorine salt system    chelate resin    adsorption purification    electrolytic manganese    single-tank and double-chamber
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TF803.27  
基金资助: 国家自然科学基金(52274409;52064028);云南省技术创新人才计划(2019HB111);紫金矿业集团股份有限公司紫金山金铜矿横向科技开发项目(KKK0202152047)
通讯作者:  *陈步明,昆明理工大学冶金与能源工程学院教授、博士研究生导师。主要从事湿法冶金电极新材料、有色金属特种功能粉体材料、表面工程技术的研究。从2009年至今,主持国家自然科学基金3项、云南省应用基础研究基金1项、企业横向课题1项。作为主要成员参加了国家自然科学基金、教育部全国百篇优秀博士学位论文专项基金、教育部新世纪优秀人才支持计划项目、国家科技部中小企业创新基金及云南省科技攻关计划等8项。获国家授权发明专利8项,实用新型专利2项。参加国内外学术会议10余次,共发表论文60余篇,包括Corrosion Science、Hydrometallurgy和Journal of Alloys & Compounds等。bumchen@kust.edu.cn   
作者简介:  李佳敏,现为昆明理工大学冶金与能源工程学院硕士研究生,在陈步明教授的指导下进行研究。目前主要研究领域为湿法冶金电极新材料。
引用本文:    
李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
LI Jiamin, CHANG Linhui, CHEN Buming, HUANG Hui, GUO Zhongcheng. Study of Mn Electrowinning Process in Chloride System with Single-tank and Double-chamber. Materials Reports, 2024, 38(3): 22010135-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22010135  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22010135
1 Padhy S K, Tripathy B C, Alfantazi A, et al. Hydrometallurgy, 2018, 177, 227.
2 Rojas-Montes J C, Perez-Garibay R, Uribe-Salas A, et al. Journal of Electroanalytical Chemistry, 2017, 803, 65.
3 Lu J M, Dreisinger D, Gluck T. Hydrometallurgy, 2016, 61, 45.
4 Chen S, Chen B M, Leng H, et al. China Nonferrous Metallurgy, 2019(3), 29 (in Chinese).
陈胜, 陈步明, 冷和, 等. 中国有色冶金, 2019(3), 29.
5 Li Y, Zheng F, Wang D, et al. China's Manganese Industry, 2018, 36(1), 122 (in Chinese).
李彦, 郑凡, 王铎, 等. 中国锰业, 2018, 36(1), 122.
6 Mga B, Sv A. Separation and Purification Technology, 2021, 277, 119445.
7 Gil V V, Porozhnyy M V, Rybalkina O A, et al. Electrochimica Acta, 2021, 391, 138913.
8 Zheng F, Huang B X, Bi W N, et al. China's Manganese Industry, 2016, 34(5), 75 (in Chinese).
郑凡, 黄炳行, 闭伟宁, 等. 中国锰业, 2016, 34(5), 75.
9 Luo B, Liu X, Li J, et al. JOM, 2021, 73(5), 1337.
10 Oweis Y, El-Hadad A, Mezour M, et al. ACS Applied Bio Materials, 2021, 4(38), 7222.
11 Anbazhagan S, Thiruvengadam V, Sukeri A. RSC Advances, 2021, 11, 4478.
12 Zhou T, Wang Y, Li T, et al. Chemical Engineering Journal, 2021, 420, 129904.
13 Hu L, Zheng J, Li Q, et al. ACS Omega, 2021, 6(26), 16955.
14 Ewa Rudnik. Journal of Electroanalytical Chemistry, 2015, 741, 20.
15 Cao X Z, David B, Lu J M, et al. Hydrometallurgy, 2017, 171, 412.
16 Xu H B, Zhou J Y, Wang C, et al. Journal of the Chinese Society of Rare Earths, 2018, 36(5), 9 (in Chinese).
徐海波, 周洁英, 王超, 等. 中国稀土学报, 2018, 36(5), 9.
17 Kavakl P A, Kavakl C, Guven O. Radiation Physics and Chemistry, 2014, 94, 105.
18 Dragan E S, Dinu M V, Lisa G, et al. European Polymer Journal, 2009, 45(7), 2119.
19 Yuchi A, Sato T, Morimoto Y, et al. Analytical Chemistry, 1997, 69(15), 2941.
20 Lee S K, Lee U H. Journal of Industrial & Engineering Chemistry, 2016, 40, 23.
21 Shu J, Wu Y, Deng Y, et al. Separation and Purification Technology, 2021, 270, 118798.
22 Li C X, Yu Y, Zhang Q W, et al. Arabian Journal for Science and Engineering, 2020, 45, 7561.
23 Luo S L, Guo H J, Zhang S K, et al. Journal of Cleaner Production, 2021, 326, 129266.
24 Fernandez-Barcia M, Hoffmann V, Oswald S, et al. Separation and Purification Technology, 2018, 334, 261.
25 Padhy S K, Patnaik P, Tripathy B C, et al. Hydrometallurgy, 2016, 165(11), 73.
26 Luo S, Guo H, Wang Z, et al. Journal of the Electrochemical Society, 2019, 166(14), E502.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed