Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23050070-9    https://doi.org/10.11896/cldb.23050070
  无机非金属及其复合材料 |
生物炭提升土壤中解磷菌定殖及其解磷能力
鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏*
昆明理工大学环境科学与工程学院,云南省土壤固碳与污染控制重点实验室,昆明 650500
Effects of Biochar on Improving the Colonization and Phosphate-solubilizing Ability of Phosphate-solubilizing Microbes
LU Lijia, JI Pixia, CHEN Quan, YI Peng, WU Min*
Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 4201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷肥施入土壤后其可溶性磷易与金属离子结合,转化为植物难以利用的沉积态磷酸盐。为满足植物的磷需求,磷肥的过量施用导致水体富营养化等一系列环境问题。如何利用绿色高效的方法减少磷肥的施用量,是值得关注的热点问题。
解磷菌是一类能够将沉积态磷酸盐活化为可溶态磷酸盐的微生物菌群,能有效促进多种植物的生长和产量。由于不同环境因素的限制,植物根际的解磷菌数量有限。通过外源添加生物炭可增加解磷菌的定殖和解磷能力,有利于提升植物对磷肥的利用率从而减少其施用量。
生物炭作为一种有机富碳材料,将其施入土壤后可以释放有效磷,而且其较大的比表面积、孔隙及所含有的营养物质与活性官能团有利于解磷菌的定殖。此外,生物炭的高pH值和丰富的营养物质可促进解磷菌释放NH4+的H+质子以及分泌有机酸、碱性磷酸酶、铁载体等,能有效提高解磷菌的解磷能力。
本文从生物炭可提高解磷菌的定殖及解磷能力、生物炭内源污染物对解磷菌的毒性机制以及通过生物炭改性手段提升解磷菌定殖与解磷能力等方面阐述了生物炭对解磷菌的影响,阐明了生物炭作为解磷菌载体的应用潜力,旨在揭示生物炭与解磷菌的协同作用能提升土壤有效磷含量的作用机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁丽佳
计丕霞
陈全
易鹏
吴敏
关键词:  磷肥  解磷机理  生物载体  铁载体  有机酸  改性生物炭    
Abstract: Applied soluble phosphorus is prone to combine with metal ions in soil, transforming into depositional phosphates which plants can not absorb. In order to meet the phosphorus needs of plants, the excessive application of phosphorus fertilizers leads to a series of environmental problems such as eutrophication. It's important to reduce the excessive application of phosphate fertilizers using environment-friendly and efficient methods.
Phosphate-solubilizing microbes are a kind of microbiome that can activate deposited phosphates into soluble phosphorus, thus effectively promoting the growth and yield of various plants. However, the biomass of phosphate-solubilizing microbes in plant rhizosphere is limited due to different environmental factors. It is conducive to improving the utilization rate of phosphorus fertilizers, reducing the application amount of phosphorus fertilizers, as well as increasing the colonization and ability of phosphate-solubilizing microbes by adding exogenous biochar.
As an organic carbon-rich material, biochar can release effective phosphorus when applied to the soil and it has a large specific surface area, abundant pores, nutrients, and active functional groups conducive to colonizing phosphate-solubilizing microbes. Biochar can promote phosphate solubilizing microbes in releasing H+ proton of NH4+, secreting organic acid, alkaline phosphatase, and siderophore, due to its high pH value and rich nutrient.
This paper systematically discusses the effect of biochar on phosphate-solubilizing microbes. It reveals the potential application of biochar as a carrier of phosphate-solubilizing microbes and the mechanism of toxicity of endogenous pollutants on phosphate-solubilizing microbes from biochar. Besides it confirms modified biochar can improve the colonization and ability of phosphate-solubilizing microbes. At the same time, this paper elucidates the mechanism of improving available phosphorus content in soil through the synergistic effect of biochar and phosphate-solubilizing microbes.
Key words:  phosphorus fertilizers    phosphate-solubilizing    biological carrier    siderophore    organic acid    modified biochar
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  X53  
基金资助: 国家自然科学基金(41977334, 42067055);云南省重点科技计划项目(202101AW070008, 202001AS070015)
通讯作者:  *吴敏,昆明理工大学环境科学与工程学院教授、博士研究生导师。2002年本科毕业于武汉大学,2005年获得北京大学硕士学位,2012年获得昆明理工大学博士学位,2014—2015年在美国麻省大学农学院进行博士后研究。从污染物环境归趋行为研究入手,针对土壤修复、改良、生物毒理学中的关键科学问题展开基础性研究。主持5项国家基金,发表学术论文90余篇,其中60余篇被SCI收录。minwup@kust.edu.cn   
作者简介:  鲁丽佳,昆明理工大学环境科学与工程学院硕士研究生,在云南省土壤固碳与污染控制重点实验室进行生物炭影响解磷菌定殖与解磷能力的相关研究。
引用本文:    
鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
LU Lijia, JI Pixia, CHEN Quan, YI Peng, WU Min. Effects of Biochar on Improving the Colonization and Phosphate-solubilizing Ability of Phosphate-solubilizing Microbes. Materials Reports, 2024, 38(21): 23050070-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050070  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23050070
1 Miller S H, Browne P, Prigent C, et al. Environmental Microbiology Reports, 2010, 2(3), 403.
2 Daniels C, Michan C, Ramos J L. Microbial Biotechnology, 2009, 2(5), 533.
3 Lu R K, Shi Z Y, Gu Y C. Soil, 1995(6), 286 (in Chinese).
鲁如坤, 时正元, 顾益初. 土壤, 1995(6), 286.
4 Sashidhar B, Podile A R. Microbial Biotechnology, 2009, 2(4), 521.
5 Cordell D, Drangert J O, White S. Global Environmental Change-Human and Policy Dimensions, 2009, 19(2), 292.
6 Sharma S B, Sayyed R Z, Trivedi M H, et al. Springerplus, 2013, 2587.
7 Priya S P T, Sivakumar T. International Journal of Current Microbiology and Applied Sciences, 2013, 2(3), 29.
8 Sperberg JI. Australian Journal of Agricultural Research, 1958, 9(6), 778.
9 Katznelson H, Peterson E A, Rouatt J W. Canadian Journal of Botany, 1962, 40(9), 1181.
10 Chi J L, He M, Wang Z X, et al. Journal of Microbiology, 2021, 41(1), 1(in Chinese).
池景良, 郝敏, 王志学,等. 微生物学杂志, 2021, 41(1), 1.
11 Shanmugam V, Kanoujia N, Singh M, et al. Crop Protection, 2011, 30(7), 807.
12 Sarker A T N M, Islam M T. Plant Science Today, 2014, 1(2) 86.
13 Akhter A, Hage-Ahmed K, Soja G, et al. Plant and Soil, 2016, 406(1-2), 425.
14 Chan K Y, Van Zwieten L, Meszaros I, et al. Australian Journal of Soil Research, 2008, 46(5), 437.
15 Batista E M C C, Shultz J, Matos T T S, et al. Scientific Reports, 2018, 8, 10677.
16 Gul S, Whalen J K, Thomas B W, et al. Agriculture Ecosystems & Environment, 2015, 206, 46.
17 de la Rosa J M, Paneque M, Miller A Z, et al. Science of the Total Environment, 2014, 499, 175.
18 Wang Y, Lin Y, Chiu P C, et al. Science of the Total Environment, 2015, 512, 454.
19 Borno M L, Mueller-Stover D S, Liu F. Science of the Total Environment, 2018, 627, 963.
20 Chintala R, Schumacher T E, McDonald L M, et al. Clean-Soil Air Water, 2014, 42(5), 626.
21 Hong C, Lu S G. Environment Science and Pollution research, 2018, 25(14), 8725.
22 Laird D, Fleming P, Wang B, et al. Geoderma, 2010, 158(3-4), 436.
23 Sun D, Hale L, Crowley D. Biology and Fertility of Soils, 2016, 52(4), 515.
24 Lehmann J, Rillig M C, Thies J, et al. Soil Biology & Biochemistry, 2011, 43(9), 1812.
25 Zimmerman A R, Gao B, Ahn M Y. Soil Biology & Biochemistry, 2011, 43(6), 1169.
26 Wei Y, Zhao Y, Shi M, et al. Bioresource Technology, 2018, 247, 190.
27 Wei Y, Zhao Y, Wang H, et al. Bioresource Technology, 2016, 221, 139.
23050070-828 Cantrell K B, Hunt P G, Uchimiya M, et al. Bioresource Technology, 2012, 107, 419.
29 Qi D, Hu J Z, Lu X J, et al. Journal of Hainan Tropical Ocean University, 2016, 23(5), 23 (in Chinese).
齐丹, 胡劲召, 卢徐节,等. 海南热带海洋学院学报, 2016, 23(5), 23.
30 Huang F, Li K, Wu R R, et al. Journal of Cleaner Production, 2020, 272, 122743.
31 Wang Z, Chen H, Zhu Z, et al. Science of the Total Environment, 2022, 830, 154790.
32 Ghodake G, Shinde S, Kadam A, et al. Journal of Cleaner Production, 2021, 297,126645.
33 Ye X F, Yu X N, Zhou H J, et al. Biomass Chemical Engineering, 2019, 53(2), 41 (in Chinese).
叶协锋, 于晓娜, 周涵君,等. 生物质化学工程, 2019, 53(2), 41.
34 Xu L, Wang B X, Wang J, et al. Soil Bulletin, 2021, 52(1), 136 (in Chinese).
徐亮, 王豹祥, 汪健,等. 土壤通报, 2020, 51(1), 136.
35 Fu Z Y, Yu X N, Zhang X F, et al. Soil Bulletin, 2018, 49(3), 575 (in Chinese).
付仲毅, 于晓娜, 张晓帆,等. 土壤通报, 2018, 49(3), 575.
36 Wei S Y. Effects of different biomass raw materials and preparation tempe-ratures on physicochemical characteristics of biochar. Ph.D. Thesis, University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), China, 2017 (in Chinese).
韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响. 博士学位论文, 中国科学院大学(中国科学院广州地球化学研究所), 2017.
37 Xu L, Yu X N, Li X L, et al. Soil Bulletin, 2021, 52(1), 75 (in Chinese).
徐亮, 于晓娜, 李雪利,等. 土壤通报, 2021, 52(1), 75.
38 Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Bioresource Technology, 2013, 131, 374.
39 Chen J F. Effects of biomass types and pyrolysis temperature on the pro-perties of biochar. Master's Thesis, Nanchang University, China, 2022(in Chinese).
陈杰峰. 生物质种类及热解温度对生物炭性能的影响研究. 硕士学位论文, 南昌大学, 2022.
40 Zhu Q L, Suo L, Liu L J, et al. Chinese Journal of Tropical Crops, 2022, 43(1), 216 (in Chinese).
朱启林, 索龙, 刘丽君,等. 热带作物学报, 2022, 43(1), 216.
41 He X S, Zhang S Q, She D, et al. Chinese Agricultural Science Bulletin, 2011, 27(15), 16 (in Chinese).
何绪生, 张树清, 佘雕,等. 中国农学通报, 2011, 27(15), 16.
42 Sun T, Zhu X P, Li D P, et al. Journal of Agricultural Resources and Environment, 2017, 34(6), 543 (in Chinese).
孙涛, 朱新萍, 李典鹏,等. 农业资源与环境学报, 2017, 34(6), 543.
43 Zhao B, O'Connor D, Zhang J, et al. Journal of Cleaner Production, 2018, 174, 977.
44 Lua A C, Yang T. Journal of Colloid and Interface Science, 2004, 276(2), 364.
45 Smith J L, Collins H P, Bailey V L. Soil Biology & Biochemistry, 2010, 42(12), 2345.
46 Zhang J Y, Pu L J, Li G. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2), 104 (in Chinese).
张继义, 蒲丽君, 李根. 农业工程学报, 2011, 27(2), 104.
47 Rimena R D. PloS one. 2017, 12(5), e0176884.
48 Hass A, Gonzalez J M, Lima I M, et al. Journal of Environmental Quality, 2012, 41(4), 1096.
49 Inyang M, Gao B, Pullammanappallil P, et al. Bioresource Technology, 2010, 101(22), 8868.
50 Keiluweit M, Nico P S, Johnson M G, et al. Environmental Science & Technology, 2010, 44(4), 1247.
51 Heidari E, Mohammadi K, Pasari B, et al. Soil Science and Plant Nutrition, 2020, 66(2), 255.
52 Sutherland I W. Microbiology-Uk, 2001, 147, 3.
53 Ochoa-Loza F J, Artiola J F, Maier R M. Journal of Environmental Quality, 2001, 30(2), 479.
54 Bueno C C, Fraceto L F, Rosa A H. Chemical Engineering Transactions, 2018, 65, 823.
55 Tao Y, Hu S, Han S, et al. Science of the Total Environment, 2019, 682, 59.
56 Kishore N, Pindi P K, Reddy S R. In: Phosphate-solubilizing microor-ganisms: a critical review, Bahadur B, Venkat Rajam M, ed., Springer, New Delhi, 2015, pp. 307.
57 Mendes G D, Zafra D L, Vassilev N B, et al. Applied and Environmental Microbiology, 2014, 80(10), 3081.
58 Han L, Wang X, Li B, et al. Journal of Environmental Chemical Engineering, 2022, 10(2), 107232.
59 Lu W L, Zhang F S, Cao Y P, et al. Acta Pedologica Sinica, 1999(2), 189 (in Chinese).
陆文龙, 张福锁, 曹一平, 等. 土壤学报, 1999(2), 189.
60 Illmer P, Schinner F. Soil Biology Biochemistry, 1992, 24(4), 389.
61 Liu S T, Lee L Y, Tai C Y, et al. Journal of bacteriology, 1992, 174(18), 5814.
62 Du H T. Effect of biochar on the activity of bacillus mucilaginosus and bacillus megaterium and the mechanism of phosphorus removal. Master's Thesis, Shenyang Agricultural University, China, 2020 (in Chinese).
杜慧婷. 生物炭对胶质芽孢杆菌(Bacillus Mucilaginosus)和巨大芽孢杆菌(Bacillus Megaterium)活性的影响及解磷机制. 硕士学位论文, 沈阳农业大学, 2020.
63 Parks E J, Brinckman F E, Baldi F. Journal of Industrial Microbiology, 1990, 5(2-3), 183.
64 Gaind S. Microbiological Research, 2016, 193, 94.
65 Krishnaraj P U, Khanuja S P S, Sadashivam K V. In: National Institute of Advanced Studies. Bangalore, 1998, pp. 27.
66 Halder A K, Mishra A K, Bhattacharyya P, et al. Folia Microbiologica, 1993, 38(4), 325.
67 Singh H, Reddy M S. European Journal of Soil Biology, 2011, 47(1), 30.
68 Singh P, Banik R M. Plant Science Today, 2019, 6(sp1), 676.
69 Zhang J. Remediation of lead-contaminated soil by immobilized high-efficiency phosphorus solubilizing bacteria from biochar. Master's Thesis, Northwestern University, China, 2019 (in Chinese).
张杰. 生物炭固定化高效解磷菌对铅污染土壤的修复研究. 硕士学位论文, 西北大学,2019.
70 Liu S N, Du H T, Huang Y W, et al. Chinese Journal of Ecology, 2022, 41(8), 1560 (in Chinese).
刘赛男, 杜慧婷, 黄玉威,等. 生态学杂志, 2022, 41(8), 1560.
71 Birch L, Bachofen R. Experientia, 1990, 46(8), 827.
72 Collavino M M, Sansberro P A, Mroginski L A, et al. Biology and Ferti-lity of Soils, 2010, 46(7), 727.
73 Ferreira C M, Vilas-Boas A, Sousa C A, et al. Amb Express, 2019, 9(1), 78.
74 Tan C L, Liu Y, Huang X G, et al. Chinese Journal of Eco-Agriculture, 2022, 30(3), 333 (in Chinese).
谭春玲, 刘洋, 黄雪刚,等. 中国生态农业学报, 2022, 30(3), 333.
75 Kong L, Gao Y, Zhou Q, et al. Journal of Hazardous Materials, 2018, 343, 276.
76 Hu X F, Jiang Y, Shu Y, et al. Journal of Geochemical Exploration, 2014, 147, 139.
77 El-Naggar A, Lee S S, Rinklebe J, et al. Geoderma, 2019, 337, 536.
78 Huang H, Lyu Y W, Liang M, er al. China Environmental Science, 2022, 42(9), 4240 (in Chinese).
黄辉, 吕雨薇, 梁敏,等. 中国环境科学, 2022, 42(9), 4240.
79 Lyu H, He Y, Tang J, et al. Environmental Pollution, 2016, 218, 1.
80 Qin Y X, Li G Y, An T C, et al. Chinese Science Bulletin, 2021, 66(1), 5 (in Chinese).
秦雅鑫, 李桂英, 安太成,等. 科学通报. 2021, 66(1), 5.
81 Fierro V, Muniz G, Basta A H, et al. Journal of Hazardous Materials, 2010, 181(1-3), 27.
82 El-Mageed T, Belal E E, Rady M, et al. Agronomy-basel, 2021, 11(7), 1290.
83 Chen Q, Lan P Y, Wu M, et al. Carbon Research, 2022, 1, 6.
[1] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[2] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[3] 聂若楠, 王旺民, 曹丽娟, 徐慧敏, 储刚, 秦文秀, 王振, 司友斌. 关于生物炭的四重功能化改性及其吸附环境污染物机制的综述[J]. 材料导报, 2023, 37(22): 22050019-9.
[4] 雷紫涵, 肖国庆, 丁冬海, 杨守磊. 埋碳烧结法制备碳/铝酸钙复合粉体及其微观表征[J]. 材料导报, 2018, 32(22): 3862-3867.
[5] 叶俊沛, 张盼月, 仙光, 张光明. 铁改性生物炭对啤酒废水厌氧消化产甲烷的促进作用研究[J]. 材料导报, 2018, 32(20): 3634-3637.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed