Effects of Biochar on Improving the Colonization and Phosphate-solubilizing Ability of Phosphate-solubilizing Microbes
LU Lijia, JI Pixia, CHEN Quan, YI Peng, WU Min*
Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
Abstract: Applied soluble phosphorus is prone to combine with metal ions in soil, transforming into depositional phosphates which plants can not absorb. In order to meet the phosphorus needs of plants, the excessive application of phosphorus fertilizers leads to a series of environmental problems such as eutrophication. It's important to reduce the excessive application of phosphate fertilizers using environment-friendly and efficient methods. Phosphate-solubilizing microbes are a kind of microbiome that can activate deposited phosphates into soluble phosphorus, thus effectively promoting the growth and yield of various plants. However, the biomass of phosphate-solubilizing microbes in plant rhizosphere is limited due to different environmental factors. It is conducive to improving the utilization rate of phosphorus fertilizers, reducing the application amount of phosphorus fertilizers, as well as increasing the colonization and ability of phosphate-solubilizing microbes by adding exogenous biochar. As an organic carbon-rich material, biochar can release effective phosphorus when applied to the soil and it has a large specific surface area, abundant pores, nutrients, and active functional groups conducive to colonizing phosphate-solubilizing microbes. Biochar can promote phosphate solubilizing microbes in releasing H+ proton of NH4+, secreting organic acid, alkaline phosphatase, and siderophore, due to its high pH value and rich nutrient. This paper systematically discusses the effect of biochar on phosphate-solubilizing microbes. It reveals the potential application of biochar as a carrier of phosphate-solubilizing microbes and the mechanism of toxicity of endogenous pollutants on phosphate-solubilizing microbes from biochar. Besides it confirms modified biochar can improve the colonization and ability of phosphate-solubilizing microbes. At the same time, this paper elucidates the mechanism of improving available phosphorus content in soil through the synergistic effect of biochar and phosphate-solubilizing microbes.
鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
LU Lijia, JI Pixia, CHEN Quan, YI Peng, WU Min. Effects of Biochar on Improving the Colonization and Phosphate-solubilizing Ability of Phosphate-solubilizing Microbes. Materials Reports, 2024, 38(21): 23050070-9.
1 Miller S H, Browne P, Prigent C, et al. Environmental Microbiology Reports, 2010, 2(3), 403. 2 Daniels C, Michan C, Ramos J L. Microbial Biotechnology, 2009, 2(5), 533. 3 Lu R K, Shi Z Y, Gu Y C. Soil, 1995(6), 286 (in Chinese). 鲁如坤, 时正元, 顾益初. 土壤, 1995(6), 286. 4 Sashidhar B, Podile A R. Microbial Biotechnology, 2009, 2(4), 521. 5 Cordell D, Drangert J O, White S. Global Environmental Change-Human and Policy Dimensions, 2009, 19(2), 292. 6 Sharma S B, Sayyed R Z, Trivedi M H, et al. Springerplus, 2013, 2587. 7 Priya S P T, Sivakumar T. International Journal of Current Microbiology and Applied Sciences, 2013, 2(3), 29. 8 Sperberg JI. Australian Journal of Agricultural Research, 1958, 9(6), 778. 9 Katznelson H, Peterson E A, Rouatt J W. Canadian Journal of Botany, 1962, 40(9), 1181. 10 Chi J L, He M, Wang Z X, et al. Journal of Microbiology, 2021, 41(1), 1(in Chinese). 池景良, 郝敏, 王志学,等. 微生物学杂志, 2021, 41(1), 1. 11 Shanmugam V, Kanoujia N, Singh M, et al. Crop Protection, 2011, 30(7), 807. 12 Sarker A T N M, Islam M T. Plant Science Today, 2014, 1(2) 86. 13 Akhter A, Hage-Ahmed K, Soja G, et al. Plant and Soil, 2016, 406(1-2), 425. 14 Chan K Y, Van Zwieten L, Meszaros I, et al. Australian Journal of Soil Research, 2008, 46(5), 437. 15 Batista E M C C, Shultz J, Matos T T S, et al. Scientific Reports, 2018, 8, 10677. 16 Gul S, Whalen J K, Thomas B W, et al. Agriculture Ecosystems & Environment, 2015, 206, 46. 17 de la Rosa J M, Paneque M, Miller A Z, et al. Science of the Total Environment, 2014, 499, 175. 18 Wang Y, Lin Y, Chiu P C, et al. Science of the Total Environment, 2015, 512, 454. 19 Borno M L, Mueller-Stover D S, Liu F. Science of the Total Environment, 2018, 627, 963. 20 Chintala R, Schumacher T E, McDonald L M, et al. Clean-Soil Air Water, 2014, 42(5), 626. 21 Hong C, Lu S G. Environment Science and Pollution research, 2018, 25(14), 8725. 22 Laird D, Fleming P, Wang B, et al. Geoderma, 2010, 158(3-4), 436. 23 Sun D, Hale L, Crowley D. Biology and Fertility of Soils, 2016, 52(4), 515. 24 Lehmann J, Rillig M C, Thies J, et al. Soil Biology & Biochemistry, 2011, 43(9), 1812. 25 Zimmerman A R, Gao B, Ahn M Y. Soil Biology & Biochemistry, 2011, 43(6), 1169. 26 Wei Y, Zhao Y, Shi M, et al. Bioresource Technology, 2018, 247, 190. 27 Wei Y, Zhao Y, Wang H, et al. Bioresource Technology, 2016, 221, 139. 23050070-828 Cantrell K B, Hunt P G, Uchimiya M, et al. Bioresource Technology, 2012, 107, 419. 29 Qi D, Hu J Z, Lu X J, et al. Journal of Hainan Tropical Ocean University, 2016, 23(5), 23 (in Chinese). 齐丹, 胡劲召, 卢徐节,等. 海南热带海洋学院学报, 2016, 23(5), 23. 30 Huang F, Li K, Wu R R, et al. Journal of Cleaner Production, 2020, 272, 122743. 31 Wang Z, Chen H, Zhu Z, et al. Science of the Total Environment, 2022, 830, 154790. 32 Ghodake G, Shinde S, Kadam A, et al. Journal of Cleaner Production, 2021, 297,126645. 33 Ye X F, Yu X N, Zhou H J, et al. Biomass Chemical Engineering, 2019, 53(2), 41 (in Chinese). 叶协锋, 于晓娜, 周涵君,等. 生物质化学工程, 2019, 53(2), 41. 34 Xu L, Wang B X, Wang J, et al. Soil Bulletin, 2021, 52(1), 136 (in Chinese). 徐亮, 王豹祥, 汪健,等. 土壤通报, 2020, 51(1), 136. 35 Fu Z Y, Yu X N, Zhang X F, et al. Soil Bulletin, 2018, 49(3), 575 (in Chinese). 付仲毅, 于晓娜, 张晓帆,等. 土壤通报, 2018, 49(3), 575. 36 Wei S Y. Effects of different biomass raw materials and preparation tempe-ratures on physicochemical characteristics of biochar. Ph.D. Thesis, University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences), China, 2017 (in Chinese). 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响. 博士学位论文, 中国科学院大学(中国科学院广州地球化学研究所), 2017. 37 Xu L, Yu X N, Li X L, et al. Soil Bulletin, 2021, 52(1), 75 (in Chinese). 徐亮, 于晓娜, 李雪利,等. 土壤通报, 2021, 52(1), 75. 38 Al-Wabel M I, Al-Omran A, El-Naggar A H, et al. Bioresource Technology, 2013, 131, 374. 39 Chen J F. Effects of biomass types and pyrolysis temperature on the pro-perties of biochar. Master's Thesis, Nanchang University, China, 2022(in Chinese). 陈杰峰. 生物质种类及热解温度对生物炭性能的影响研究. 硕士学位论文, 南昌大学, 2022. 40 Zhu Q L, Suo L, Liu L J, et al. Chinese Journal of Tropical Crops, 2022, 43(1), 216 (in Chinese). 朱启林, 索龙, 刘丽君,等. 热带作物学报, 2022, 43(1), 216. 41 He X S, Zhang S Q, She D, et al. Chinese Agricultural Science Bulletin, 2011, 27(15), 16 (in Chinese). 何绪生, 张树清, 佘雕,等. 中国农学通报, 2011, 27(15), 16. 42 Sun T, Zhu X P, Li D P, et al. Journal of Agricultural Resources and Environment, 2017, 34(6), 543 (in Chinese). 孙涛, 朱新萍, 李典鹏,等. 农业资源与环境学报, 2017, 34(6), 543. 43 Zhao B, O'Connor D, Zhang J, et al. Journal of Cleaner Production, 2018, 174, 977. 44 Lua A C, Yang T. Journal of Colloid and Interface Science, 2004, 276(2), 364. 45 Smith J L, Collins H P, Bailey V L. Soil Biology & Biochemistry, 2010, 42(12), 2345. 46 Zhang J Y, Pu L J, Li G. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2), 104 (in Chinese). 张继义, 蒲丽君, 李根. 农业工程学报, 2011, 27(2), 104. 47 Rimena R D. PloS one. 2017, 12(5), e0176884. 48 Hass A, Gonzalez J M, Lima I M, et al. Journal of Environmental Quality, 2012, 41(4), 1096. 49 Inyang M, Gao B, Pullammanappallil P, et al. Bioresource Technology, 2010, 101(22), 8868. 50 Keiluweit M, Nico P S, Johnson M G, et al. Environmental Science & Technology, 2010, 44(4), 1247. 51 Heidari E, Mohammadi K, Pasari B, et al. Soil Science and Plant Nutrition, 2020, 66(2), 255. 52 Sutherland I W. Microbiology-Uk, 2001, 147, 3. 53 Ochoa-Loza F J, Artiola J F, Maier R M. Journal of Environmental Quality, 2001, 30(2), 479. 54 Bueno C C, Fraceto L F, Rosa A H. Chemical Engineering Transactions, 2018, 65, 823. 55 Tao Y, Hu S, Han S, et al. Science of the Total Environment, 2019, 682, 59. 56 Kishore N, Pindi P K, Reddy S R. In: Phosphate-solubilizing microor-ganisms: a critical review, Bahadur B, Venkat Rajam M, ed., Springer, New Delhi, 2015, pp. 307. 57 Mendes G D, Zafra D L, Vassilev N B, et al. Applied and Environmental Microbiology, 2014, 80(10), 3081. 58 Han L, Wang X, Li B, et al. Journal of Environmental Chemical Engineering, 2022, 10(2), 107232. 59 Lu W L, Zhang F S, Cao Y P, et al. Acta Pedologica Sinica, 1999(2), 189 (in Chinese). 陆文龙, 张福锁, 曹一平, 等. 土壤学报, 1999(2), 189. 60 Illmer P, Schinner F. Soil Biology Biochemistry, 1992, 24(4), 389. 61 Liu S T, Lee L Y, Tai C Y, et al. Journal of bacteriology, 1992, 174(18), 5814. 62 Du H T. Effect of biochar on the activity of bacillus mucilaginosus and bacillus megaterium and the mechanism of phosphorus removal. Master's Thesis, Shenyang Agricultural University, China, 2020 (in Chinese). 杜慧婷. 生物炭对胶质芽孢杆菌(Bacillus Mucilaginosus)和巨大芽孢杆菌(Bacillus Megaterium)活性的影响及解磷机制. 硕士学位论文, 沈阳农业大学, 2020. 63 Parks E J, Brinckman F E, Baldi F. Journal of Industrial Microbiology, 1990, 5(2-3), 183. 64 Gaind S. Microbiological Research, 2016, 193, 94. 65 Krishnaraj P U, Khanuja S P S, Sadashivam K V. In: National Institute of Advanced Studies. Bangalore, 1998, pp. 27. 66 Halder A K, Mishra A K, Bhattacharyya P, et al. Folia Microbiologica, 1993, 38(4), 325. 67 Singh H, Reddy M S. European Journal of Soil Biology, 2011, 47(1), 30. 68 Singh P, Banik R M. Plant Science Today, 2019, 6(sp1), 676. 69 Zhang J. Remediation of lead-contaminated soil by immobilized high-efficiency phosphorus solubilizing bacteria from biochar. Master's Thesis, Northwestern University, China, 2019 (in Chinese). 张杰. 生物炭固定化高效解磷菌对铅污染土壤的修复研究. 硕士学位论文, 西北大学,2019. 70 Liu S N, Du H T, Huang Y W, et al. Chinese Journal of Ecology, 2022, 41(8), 1560 (in Chinese). 刘赛男, 杜慧婷, 黄玉威,等. 生态学杂志, 2022, 41(8), 1560. 71 Birch L, Bachofen R. Experientia, 1990, 46(8), 827. 72 Collavino M M, Sansberro P A, Mroginski L A, et al. Biology and Ferti-lity of Soils, 2010, 46(7), 727. 73 Ferreira C M, Vilas-Boas A, Sousa C A, et al. Amb Express, 2019, 9(1), 78. 74 Tan C L, Liu Y, Huang X G, et al. Chinese Journal of Eco-Agriculture, 2022, 30(3), 333 (in Chinese). 谭春玲, 刘洋, 黄雪刚,等. 中国生态农业学报, 2022, 30(3), 333. 75 Kong L, Gao Y, Zhou Q, et al. Journal of Hazardous Materials, 2018, 343, 276. 76 Hu X F, Jiang Y, Shu Y, et al. Journal of Geochemical Exploration, 2014, 147, 139. 77 El-Naggar A, Lee S S, Rinklebe J, et al. Geoderma, 2019, 337, 536. 78 Huang H, Lyu Y W, Liang M, er al. China Environmental Science, 2022, 42(9), 4240 (in Chinese). 黄辉, 吕雨薇, 梁敏,等. 中国环境科学, 2022, 42(9), 4240. 79 Lyu H, He Y, Tang J, et al. Environmental Pollution, 2016, 218, 1. 80 Qin Y X, Li G Y, An T C, et al. Chinese Science Bulletin, 2021, 66(1), 5 (in Chinese). 秦雅鑫, 李桂英, 安太成,等. 科学通报. 2021, 66(1), 5. 81 Fierro V, Muniz G, Basta A H, et al. Journal of Hazardous Materials, 2010, 181(1-3), 27. 82 El-Mageed T, Belal E E, Rady M, et al. Agronomy-basel, 2021, 11(7), 1290. 83 Chen Q, Lan P Y, Wu M, et al. Carbon Research, 2022, 1, 6.