Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24090227-14    https://doi.org/10.11896/cldb.24090227
  新型生物医用材料 |
骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述
姜文平1,3, 庞兴志2,3, 何娟霞2,3, 杨文超2,3,*, 湛永钟1,2,3,*
1 广西大学化学化工学院,南宁 530004
2 广西大学资源环境与材料学院,南宁 530004
3 省部共建特色金属与组合结构全寿命安全国家重点实验室,南宁 530004
A Review on Preparation Process and Properties of Titanium Alloy-Hydroxyapatite Composite Materials for Bone Repair
JIANG Wenping1,3, PANG Xingzhi 2,3, HE Juanxia2,3, YANG Wenchao2,3,*, ZHAN Yongzhong1,2,3,*
1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
3 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
下载:  全 文 ( PDF ) ( 56443KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨修复用钛合金-羟基磷灰石(HA)复合材料因兼具良好的生物相容性与力学性能而备受关注。材料的金属部分构成了具有良好力学性能的基体骨架,由钙磷化合物组成的非金属部分则能有效促进骨细胞生长,确保材料具有良好的生物相容性。该类材料现有制备工艺有高温烧结和搅拌摩擦焊接两大类,其中高温烧结主要包括热压烧结、无压传热烧结、放电等离子烧结、微波烧结与激光烧结。目前高温烧结存在着烧结温度低时力学性能不足与烧结温度过高时钙磷化合物热分解严重的问题,而搅拌摩擦焊接制备工艺尚不成熟。本文介绍了骨修复用钛合金/HA复合材料的上述制备工艺的工作原理与特点,分析和讨论了各制备工艺对材料的相组成、微观组织形貌、力学性能与生物相容性的影响,阐述了高温烧结机理、烧结过程是否加压等工艺因素是影响材料性能的重要原因的观点,认为对钙磷化合物影响较小的搅拌摩擦焊接和微波烧结这两种制备工艺具有较好的发展潜力,并总结了各制备工艺的优缺点与评价其发展前景,最后提出骨修复用钛合金/HA复合材料制备工艺的三个研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜文平
庞兴志
何娟霞
杨文超
湛永钟
关键词:  钛合金-羟基磷灰石复合材料  制备工艺  羟基磷灰石  粉末冶金  搅拌摩擦焊接    
Abstract: Titanium alloy-hydroxyapatite composite materials for bone repair have attracted much attention due to their excellent biocompatibility and mechanical properties. The metal part of the material constitutes a matrix skeleton with good mechanical properties, while the non-metallic part composed of calcium phosphate compounds can effectively promote bone cell growth and ensure good biocompatibility of the material. There are two main preparation processes for this type of material: high-temperature sintering and friction stir welding. High temperature sintering mainly includes hot pressing sintering, pressureless heat transfer sintering, discharge plasma sintering, microwave sintering, and laser sintering. At pre-sent, there are problems with insufficient mechanical properties during low-temperature sintering and severe thermal decomposition of calcium phosphate compounds during high-temperature sintering in the high-temperature sintering process, while the preparation process of friction stir welding is yet inchoate. This review summarizes the working principle and characteristics of the aforementioned preparation process of titanium alloy hydroxyapatite composite materials for bone repair. It analyzes and discusses the influence of each preparation process on the products’ phase composition, microstructure, mechanical properties, and biocompatibility. It elaborates the viewpoint that high-temperature sintering mechanism, the pressure condition (pressurized or pressureless) of the sintering process, and other process factors affect greatly the material properties, and depicts the promising potential of the two preparation processes, i. e., friction stir welding and microwave sintering, owing to relatively small impact on calcium phosphate compounds. It also clarifies the advantages/disadvantages and development prospect of the preparation processes entailed, and finally ends with a tentative prophecy about the three research directions in the preparation process of titanium alloy hydroxyapatite composite materials for bone repair.
Key words:  titanium alloy-hydroxyapatite composite material    preparation process    hydroxyapatite    powder metallurgy    friction stir welding
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG148  
基金资助: 广西自然科学基金重点项目(2024JJD160014)
通讯作者:  *杨文超,广西大学资源环境与材料学院高级工程师、硕士研究生导师。主要从事电子封装材料、跨尺度材料设计等研究工作,同时负责X射线光电子能谱仪等大型仪器设备的管理、维护及应用等工作。ywch053@163.com
湛永钟,广西大学资源环境与材料学院教授、博士研究生导师,华南理工大学博士研究生导师。主要研究方向为轻合金结构材料、生物医用材料等。zyzmatres@aliyun.com   
作者简介:  姜文平,广西大学化学化工学院博士研究生,在湛永钟教授的指导下进行生物医用复合材料研究。
引用本文:    
姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
JIANG Wenping, PANG Xingzhi, HE Juanxia, YANG Wenchao, ZHAN Yongzhong. A Review on Preparation Process and Properties of Titanium Alloy-Hydroxyapatite Composite Materials for Bone Repair. Materials Reports, 2025, 39(5): 24090227-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090227  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24090227
1 He Y H. Fabrication and properties of hydroxyapatite/Ti-13Nb-13Zr composites for biomedical application. Ph. D. Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
何远怀. 羟基磷灰石/Ti-13Nb-13Zr生物材料的制备和性能研究. 博士学位论文, 昆明理工大学, 2018.
2 Walaa A E, Moustafa A D, Atef H, et al. Materials & Design, 2024, 241, 112850.
3 Wapner K L. Clinical Orthopaedics and Related Research, 1991, 271, 12.
4 Nag S, Banerjee R, Fraser H L. Materials Science and Engineering C, 2005, 25(3), 357.
5 Katz J L. Nature, 1980, 283(5742), 106.
6 Amir A, Abu B S, Norhamidi M, et al. Materials & Design, 2014, 55, 165.
7 Wang H L, Shah S A A, Hao Y L, et al. Journal of Alloys and Compounds, 2017, 700, 155.
8 Shao L, Gu Z, Zhou X Z, et al. Bulletin of Science and Technology, 2014, 30(3), 122 (in Chinese).
邵林, 顾政, 周欣竹, 等. 科技通报, 2014, 30(3), 122.
9 Gu Z, Zheng J J, Zhou X Z. The World of Building Materials, 2013, 34(2), 5 (in Chinese).
顾政, 郑建军, 周欣竹. 建材世界, 2013, 34(2), 5.
10 Marco V, Roberto M, Marek B, et al. Journal of Biomechanics, 2000, 33(12), 1611.
11 Zhou K X, Wang M F, Zhang S, et al. Journal of Materials Research and Technology, 2024, 30, 8260.
12 Li C L, Zhan Y Z, Jiang W P. Materials & Design, 2011, 32(8), 4598.
13 Zheng Y F, Li L. Biomedical materials science, Northwestern Polytechnical University Press, China, 2009, pp. 351 (in Chinese).
郑玉峰, 李莉. 生物医用材料学, 西北工业大学出版社, 2009, pp. 351.
14 Wei D Q, Zhou Y, Jia D C, et al. Applied Surface Science, 2008, 254(6), 1775.
15 Jin Y R, Jia Q M, Shan S Y. Materials Reports, 2019, 33(23), 4008 (in Chinese).
晋艳茹, 贾庆明, 陕绍云. 材料导报, 2019, 33(23), 4008.
16 Gautier S, Champion E, Bernache-Assollant D, et al. Journal of the European Ceramic Society, 1999, 19(4), 469.
17 Mangal R, Vamsi K B, Amit B, et al. Acta Biomaterialia, 2011, 7(2), 866.
18 Limin S, Christopher C B, Clare P G. Materials Science and Engineering A, 2003, 360(1-2), 70.
19 Jansen J A, van de Waerden J P, Wolke J G, et al. Journal of Biomedical Materials Research, 1991, 25(8), 973.
20 Ning C Q, Ning Y, Wang H L, et al. Journal of Materials Science Letters, 2000, 19(14), 1243
21 Wang X P, Chen Y Y, Xu L J, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8), 2074.
22 Xie F X, Sun Q C, Mu Y M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 152, 106466.
23 Prakash C, Singh S, Ramakrishna S, et al. Journal of Alloys and Compounds, 2020, 824, 153774.
24 Zuo S Y, Peng Q, Zhang T, et al. Ceramics International, 2024, 50(11, Part A), 18105.
25 Shekhar N, Rajesh T, Bikramjit B. Materials Science and Engineering C, 2009, 29(1), 97.
26 Rakesh K, Anupam A. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105852.
27 Amir A, Abu B S, Norhamidi M, et al. Materials & Design, 2015, 65, 1028.
28 Zhang J, Jiang Z G, Guo H, et al. Vacuum, 2021, 184, 109863.
29 Gurpreet S, Neeraj S, Deepak K, et al. Materials Chemistry and Physics, 2020, 243, 122662.
30 Muhammad R R, Abu B S, Norhamidi M, et al. Materials & Design, 2015, 87, 386.
31 Ning C, Zhou Y. Acta Biomaterialia, 2008, 4(6), 1944.
32 Apurbba K S, Shivani G. JOM, 2020, 72(3), 1211.
33 Cai Z W, Wang X Y, Zhang Z R, et al. RSC Advances, 2019, 9(24), 13623.
34 Mushtaq F, Mat R, Ani F N. Renewable and Sustainable Energy Reviews, 2014, 39, 555.
35 Lin W, Bai X D, Ma W J, et al. Tsinghua Science and Technology, 2002(5), 696 (in Chinese).
林伟, 白新德, 马文军, 等. 清华大学学报(自然科学版), 2002(5), 696.
36 Zhou S Z, Wu X B, Gao L Y, et al. Cemented Carbide, 2012, 29(3), 174 (in Chinese).
周书助, 伍小波, 高凌燕, 等. 硬质合金, 2012, 29(3), 174.
37 Zuo S Y, Peng Q, Luo T, et al. Biomaterials Science, 2024, 12(1), 92.
38 Pan Z M. Journal of Shenzhen University, 2002(2), 81 (in Chinese).
潘志铭. 深圳大学学报, 2002(2), 81.
39 Man T C, Chak Y T, Ling C, et al. Composites Part B:Engineering, 2015, 83, 50.
40 Yang Y Q, Wu S B, Zhang Y, et al. Chinese Journal of Lasers, 2020, 47(5), 203 (in Chinese).
杨永强, 吴世彪, 张越, 等. 中国激光, 2020, 47(5), 203.
41 Shahid M, Ismail L. In: 18th International Conference on Machine Design and Production, EskiSehiR, Turkey, 2018, pp. 285.
42 Yuwei Z, Haize G, Diana A L. Procedia Engineering, 2015, 114, 658.
43 Zhao X H, Zuo Z B, Han Z Y, et al. Materials Reports, 2016, 30(23), 120 (in Chinese).
赵霄昊, 左振博, 韩志宇, 等. 材料导报, 2016, 30(23), 120.
44 Attar H, Calin M, Zhang L C, et al. Materials Science and Engineering A, 2014, 593, 170.
45 Dirk H, Vanessa S, Eric W, et al. Acta Materialia, 2016, 117, 371.
46 Niloofar S, Ali F. Progress in Materials Science, 2021, 117, 100724.
47 Xie W J, He J, Zhu S, et al. Journal of Materials Research, 2011, 26, 1791.
48 Yamazaki K, Risbud S H, Aoyama H, et al. Journal of Materials Processing Technology, 1996, 56(1), 955.
49 Suárez M, Fernández A, Menéndez J L, et al. In: Burcu E (Ed. ), Sintering Applications. IntechOpen, Rijeka, 2013, Ch. 13, pp. 319.
50 Anselmi-Tamburini U, Gennari S, Garay J E, et al. Materials Science and Engineering A, 2005, 394(1), 139.
51 Li K, Liu X, Zhao Y. Coatings, 2019, 9(2), 129.
52 Rahmati R, Khodabakhshi F. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 127.
53 Amirhosein S, Mehrdad A, Hamed S. Materials Today Communications, 2023, 37, 107305.
54 Axaule M, Aidar K, Aleksander P, et al. Coatings, 2024, 14(3), 333.
55 Rana A A. Journal of Bio- and Tribo-Corrosion, 2016, 2(2), 5.
56 Davoud B, Mardali Y, Sousan R. Materials & Design, 2015, 65, 447.
57 Andre M, Merve N D, Rajani K V, et al. Materials Today Communications, 2022, 33, 104693.
58 Man T C, Chak Y T, Ling C, et al. Materials Science and Engineering C, 2014, 42, 746.
59 Lin Y J, Mohamed B, Zeng W Y, et al. Journal of Materials Engineering and Performance, 2024, 33, 9664.
60 Wang C C, Wang Y P, Bao Z L, et al. Ceramics International, 2022, 48, 28678.
61 Han C J, Li Y, Wang Q, et al. Materials & Design, 2018, 141, 256.
62 Guo Y, Tan Y N, Liu Y, et al. Materials Science and Engineering C, 2017, 80, 197.
63 Rastgoo M J, Razavi M, Salahi E, et al. Journal of the Australian Ceramic Society, 2017, 53(2), 449.
64 He Y H, Zhang Y Q, Jiang Y H, et al. Vacuum, 2016, 131, 176.
65 Chu C, Lin P, Dong Y, et al. Journal of Materials Science: Materials in Medicine, 2002, 13(10), 985.
66 Yun Y Z, Kyo H K, Agrawal C M, et al. Biomaterials, 2004, 25(15), 2927.
67 Pedro B, Enori G, Gabriel B, et al. Materials Research, 2011, 14(3), 384.
68 Wei Q S, Li S, Han C J, et al. Journal of Laser Applications, 2015, 222, 444.
69 Zhang X, Yocom C J, Mao B, et al. Journal of Laser Applications, 2019, 31(3), 1201.
70 Zhou J, Wang Y R, Zhi G, et al. Metals and Materials International, 2024, 30(1), 240.
71 Mostafa M E, Shash A Y, Abd-Rabou M, et al. Journal of Advanced Joining Processes, 2021, 3, 100059.
72 Khodabakhshi F, Rahmati R, Nosko M, et al. Surface and Coatings Technology, 2019, 374, 460.
73 Hench L L. Journal of American Ceramic Society, 1998, 81(7), 1705.
74 Xie F X, Huang J B, Cao S, et al. Materials Reports, 2023, 37(13), 20170222 (in Chinese).
颉芳霞, 黄家兵, 曹澍, 等. 材料导报, 2023, 37(13), 20170222.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[4] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[5] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[6] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[7] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[8] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[9] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[10] 张永芳, 黎亮, 董丽虹, 王海斗, 王朋, 谢向宇. RFID传感标签制备工艺研究进展[J]. 材料导报, 2023, 37(22): 22030149-10.
[11] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[12] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[13] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[14] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[15] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed