Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24100162-11    https://doi.org/10.11896/cldb.24100162
  新型生物医用材料 |
XPS在新型齿科医用材料研究中的应用
王鑫瑶1,2, 韦永韬1,2, 吴静3,4, 王显彬3,4, 杨文超1,2,*, 湛永钟1,2
1 广西大学资源环境与材料学院,南宁 530004
2 广西高校高性能结构材料及热表加工重点实验室,南宁 530004
3 广西壮族自治区自然资源生态修复中心,南宁 530004
4 南方石山地区矿山地质环境修复工程技术创新中心,南宁 530004
Application of XPS in the Research of New Dental Medical Materials
WANG Xinyao1,2, WEI Yongtao1,2, WU Jing3,4, WANG Xianbin3,4, YANG Wenchao1,2,*, ZHAN Yongzhong1,2
1 College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2 Key Laboratory of High Performance Structural Materials and Thermo-surface Processing (Guangxi University), Nanning 530004, China
3 Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530004, China
4 Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning 530004, China
下载:  全 文 ( PDF ) ( 15671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 牙缺失是口腔临床中发病率极高的疾病之一。种植修复已成为当前修复缺失牙的常规治疗方案,常用种植材料是钛及钛合金材料,其具有无毒、弹性模量与人体硬组织相匹配和种植修复成功率高等优点,但钛基种植体生物活性差,甚至会出现失效的情况。因此,通过对齿科材料进行表面改性,可以提高植入物表面的抗菌性、耐腐蚀性并加快骨结合的过程,从而提高其成功率,有利于其长期存活。X射线光电子能谱(XPS)在对改性材料表面机理进行分析方面具有“高灵敏”和“超微量”等独特优势,在新型齿科医用材料的研究中,XPS技术可用于分析材料的表面成分和化学状态,这对研究材料的抗菌性、耐腐蚀性和生物相容性等关键性能至关重要。通过XPS技术,可以准确地了解材料表面的元素组成、化学价态以及表面化学状态等信息,从而评估材料的生物安全性和功能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鑫瑶
韦永韬
吴静
王显彬
杨文超
湛永钟
关键词:  X射线光电子能谱  抗菌  抗腐蚀  生物相容性    
Abstract: Tooth loss is one of the most common diseases in oral clinics. Implant restoration has become a conventional treatment plan for the restoration of missing teeth. Titanium and titanium alloy materials are commonly used as implant materials, which have the advantages of non-toxicity, matching elastic modulus with human hard tissue and high success rate of implant restoration. However, titanium-based implants have poor biological activity and even implant failure. Therefore, the surface modification technology of dental materials can improve the antibacterial properties and corrosion resistance of the implant surface and accelerate the process of bone bonding, improve its success rate and contribute to its long-term survival. X-ray photoelectron spectroscopy (XPS) has unique advantages such as “high sensitivity” and “ultramicroscopic” in the analysis of the surface mechanism of modified materials. In the research of new dental medical materials, XPS technology can be used to analyze the surface composition and chemical state of materials, which is crucial for the study of the key properties of materials such as antibacterial, corrosion resistance and biocompatibility. Through XPS technology, information such as elemental composition, chemical valence and surface chemical state can be accurately understood on the surface of the material, so as to evaluate the biosafety and functionality of the material.
Key words:  XPS    antibacterial    anti-corrosion    biocompatibility
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG148  
基金资助: 广西重点研发计划(桂科AB24010099;桂科AB24010273);广西自然科学基金(2025GXNSFAA069656;2025GXNSFDA069021);南方石山地区矿山地质环境修复工程技术创新中心(NFSS2023018)
通讯作者:  *杨文超,广西大学资源环境与材料学院高级工程师、硕士研究生导师。主要从事电子封装材料、跨尺度材料设计等研究工作,同时负责X射线光电子能谱仪等大型仪器设备的管理、维护及应用等工作。ywch053@163.com   
作者简介:  王鑫瑶,现为广西大学资源环境与材料学院硕士研究生,在湛永钟和杨文超两位导师的指导下进行医用金属材料的研究。
引用本文:    
王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
WANG Xinyao, WEI Yongtao, WU Jing, WANG Xianbin, YANG Wenchao, ZHAN Yongzhong. Application of XPS in the Research of New Dental Medical Materials. Materials Reports, 2025, 39(5): 24100162-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100162  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24100162
1 Liu R Y, Zhang S S, Si Y, et al. Chinese Journal of Practical Stomatology, 2023, 16(5), 585 (in Chinese).
刘若迎, 张珊珊, 司燕, 等. 中国实用口腔科杂志, 2023, 16(5), 585.
2 Derks J, Tomasi C. Journal of Clinical Periodontology, 2015, 42, S158.
3 Yang Y, Wang Z F, Duan J M. Chinese Journal of Prosthodontics, 2018, 19(5), 5 (in Chinese).
杨勇, 王之发, 段建民. 口腔颌面修复学杂志, 2018, 19(5), 5.
4 Li D H. Journal of the Fourth Military Medical University, 2009, 30(5), 387 (in Chinese).
李德华. 第四军医大学学报, 2009, 30(5), 387.
5 Hou Y M. The mechanical properties of simulation of implant prosthesis based on the finite element. Master’s Thesis, Hebei University of Tech-nolog, China, 2015 (in Chinese).
侯玉梅. 基于有限元种植修复体的力学性能仿真研究. 硕士学位论文, 河北工业大学, 2015.
6 Geetha M, Singh A K, Asokamani, et al. Progress in Materials Science, 2008, 54(3), 397.
7 Zhang X P, Yu S R, Xia L J, et al. Rare Metal Materials and Engineering, 2002, 31(4), 246 (in Chinese).
张新平, 于思荣, 夏连杰, 等. 稀有金属材料与工程, 2002, 31(4), 246.
8 Yang K T, Song C L, Ma Z H, et al. Journal of Biomedical Engineering, 2024, 41(3), 604 (in Chinese).
杨开通, 宋成龙, 马智豪, 等. 生物医学工程学杂志, 2024, 41(3), 604.
9 Nordling C, Hagstrm S, Siegbahn K. Zeitschrift Für Physik, 1964, 178(5), 433.
10 Yang W C, Liu D F, Gao X, et al. China Port Science and Technology, 2022, 4(2), 30 (in Chinese).
杨文超, 刘殿方, 高欣, 等. 中国口岸科学技术, 2022, 4(2), 30.
11 Yin Y X. Preparation and exploration of photoresponse nanosystem TiN coating and CoP nanomateriaials in prevention and treatment of peri-implantitis. Ph. D. Thesis, Shandong University, China, 2021 (in Chinese).
尹贻鑫. 光响应纳米材料TiN及CoP的构建及其在预防治疗种植体周围炎领域的探索. 博士学位论文, 山东大学, 2021.
12 Yang Y. The study of preparation and preliminary application of oral health knowledge, attitude and practice questionnaire for patients with implant. Master’s Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese).
杨怡. 种植义齿患者口腔健康知信行问卷的编制及初步应用研究. 硕士学位论文, 华中科技大学, 2023.
13 Bharadwaj A, Rastogi A, Pandey S, et al. BioMed Research International, 2022, 2022(1), 5419874.
14 Li Y P, Li Z R. World Notes on Antibiotics, 2009, 30(4), 148 (in Chinese).
李艳萍, 李卓荣. 国外医药(抗生素分册), 2009, 30(4), 148.
15 Matica M A, Aachmann F L, Tøndervik A, et al. International Journal of Molecular Sciences, 2019, 20(23), 5889.
16 Yuan L, Li Z. Adhesion, 2023, 50(6), 123 (in Chinese).
袁力, 李治. 粘接, 2023, 50(6), 123.
17 De Silva M, Ning C, Ghanbar S, et al. Journal of Hospital Infection, 2015, 91(1), 53.
18 Sun X X, Gao J X, Li H, et al. Journal of Functional Materials, 2020, 51(9), 9066 (in Chinese).
孙晓萱, 高建新, 李杭, 等. 功能材料, 2020, 51(9), 9066.
19 Reznickova A, Nguyenova H Y, Zaruba K, et al. Vacuum, 2022, 203, 111268.
20 Palmieri V, Bugli F, Lauriola M C, et al. ACS Biomaterials Science & Engineering, 2017, 3(4), 619.
21 Xuan J Q, Feng W G, Wang J Y, et al. Drug Resistance Updates, 2023, 68, 100954.
22 Chen G M, Lyu W Q, Jiang M G, et al. Liaoning Chemical Industry, 2020, 49(7), 867 (in Chinese).
陈国铭, 吕婉秋, 江民乾, 等. 辽宁化工, 2020, 49(7), 867.
23 Tang H, Zhang P, Kieft T L, et al. Acta Biomaterialia, 2010, 6(7), 2562.
24 Durdu S, Yalçin E, Altinkök A, et al. Scientific Reports, 2023, 13(1), 4699.
25 Li J J, Wu X Q, Liang Z J, et al. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113477.
26 Zhang S, Liang X J, Gadd G M, et al. Applied Surface Science, 2019, 490, 231.
27 Chai M Z, An M W, Zhang X Y. Materials Science and Engineering: C, 2021, 129, 112416.
28 Zhang Z J. Construction of therapeutic cationic antibacterial polymers for oral infection treatment. Master’s Thesis, Soochow University, China, 2023 (in Chinese).
章子俊. 口腔感染治疗性阳离子抗菌聚合物的合成. 硕士学位论文. 苏州大学, 2023.
29 Karpiński T M, Szkaradkiewicz A K. European Review for Medical and Pharmacological Sciences, 2015, 19(7), 1321.
30 Wu X Q, Li L Q, Tao W, et al. Biomaterials Advances, 2023, 151, 213491.
31 Arita K, Shinonaga Y, Nishino M. Dental Materials Journal, 2006, 25(4), 684.
32 Shinonaga Y, Arita K. Acta Biomaterialia, 2012, 8(3), 1388.
33 Jin G Y. Preparation of cationic polymer containing hydrogel dressing andintegrated treatment of MRSA infection wound. Master’s Thesis, Jilin University, China, 2023 (in Chinese).
金冠甬. 含阳离子聚合物的水凝胶敷料制备及在MRSA感染创面的一体化治疗. 硕士学位论文, 吉林大学, 2023.
34 Sun F, Hu W, Zhao Y, et al. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112696.
35 Atefyekta S, Pihl M, Lindsay C, et al. Acta Biomaterialia, 2019, 83, 245.
36 Zhang C, Huang J, Lan X, et al. Applied Surface Science, 2021, 557, 149799.
37 Li X Y, Qi F X, Zhu J X, et al. Materials Today Communications, 2024, 41, 110683.
38 Skorupa M, Skonieczna M, Shyntum D Y, et al. Electrochimica Acta, 2024, 492, 144354.
39 Jamesh M I. Lubricants, 2022, 10(10), 255.
40 Akhtar M, Uzair S A, Rizwan M, et al. Frontiers in Materials, 2022, 8, 747169.
41 Pesode P A, Barve S B. Materials Today: Proceedings, 2021, 47, 5652.
42 Wang H, Liang C H. Corrosion Science and Protection Technology, 2004, 16(2), 96 (in Chinese).
王华, 粱成浩. 腐蚀科学与防护技术, 2004, 16(2), 96.
43 Zhao Y J, Xu J, Wang Q N, et al. Journal of Alloys and Compounds, 2024, 972, 172824.
44 Schatkoski V M, do Amaral Montanheiro T L, de Menezes B R C, et al. Ceramics International, 2021, 47(3), 2999.
45 Yao L T, Al-Bishari A M, Shen J T, et al. Ceramics International, 2023, 49(14), 22961.
46 Jayasree A, Gómez-Cerezo M N, Verron E, et al. Materials Today Advances, 2022, 16, 100297.
47 Ma M, Zhao M L, Deng H Y, et al. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113180.
48 Butler J, Handy R D, Upton M, et al. ACS Nano, 2023, 17(8), 7064.
49 Zhang X Y, Lu S X, He D M, et al. Transactions of Nonferrous Metals Society of China, 2023, 33(8), 2395.
50 Chaturvedi T P. Indian Journal of Dental Research, 2009, 20(1), 91.
51 Matykina E, Arrabal R, Mingo B, et al. Surface and Coatings Technology, 2016, 307, 1255.
52 Nikpour S, Henderson J D, Matin S, et al. Electrochimica Acta, 2024, 475, 143650.
53 Gao J Y, Wang M Y. Journal of Physics and Chemistry of Solids, 2021, 150, 109806.
54 Dillon C P. Materials Performance, 1998, 37(7), 69.
55 Shahmohammadi M, Sun Y, Yuan J C C, et al. Surface and Coatings Technology, 2022, 444, 128686.
56 Costa R C, Abdo V L, Mendes P H C, et al. Journal of Bio-and Tribo-Corrosion, 2021, 7(4), 136.
57 Zhou X, Xu D K, Geng S J, et al. Journal of Materials Research and Technology, 2021, 14, 1459.
58 Bao Y C, Wang W L, Cui W F, et al. Surface and Coatings Technology, 2021, 419, 127296.
59 Joo S Y, Nisar S S, Choe H C. Applied Surface Science, 2024, 681, 161494.
60 Topuz M, Dikici B, Kasapoglu A E, et al. Materials Today Communications, 2024, 40, 110110.
61 Hansson H A, Albrektsson T, Brnemark P I. The Journal of Prosthetic Dentistry, 1983, 50(1), 108.
62 Langer R, Tirrell D A. Nature, 2004, 428(6982), 487.
63 Sun T L, Qing G Y, Su B L, et al. Chemical Society Reviews, 2011, 40(5), 2909.
64 Kong L. Biomechanics optimum design and analysis of dental implant macrostructure in type B/2 bone. Ph. D. Thesis, Air Force Medical University, China, 2007 (in Chinese).
孔亮. B/2类骨质下种植体宏观结构的生物力学优化设计和分析. 博士学位论文, 第四军医大学, 2007.
65 Li X Y, Wu J, Li D X, et al. Bioactive Materials, 2021, 6(9), 2658.
66 Chen C S, Chang J H, Srimaneepong V, et al. Surface and Coatings Technology, 2020, 399, 126125.
67 Wang F F, Li C J, Zhang S, et al. Surface and Coatings Technology, 2020, 382, 125161.
68 Wang Y Y, Bai X X, Li H Z, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105820.
69 Doe Y, Ida H, Seiryu M, et al. Materialia, 2020, 12, 100801.
70 Luo J S, Wu Z H, Dai Y, et al. Surface and Coatings Technology, 2021, 427, 127852.
71 CM S. Applied Osseointegration Research, 2006, 5, 50.
72 Wu T, Zhou Q Y, Hong G Y, et al. Colloids and Surfaces B: Biointerfaces, 2023, 230, 113484.
73 Castner D G, Ratner B D. Surface Science, 2002, 500(1-3), 28.
74 Williams D F. Biomaterials, 2008, 29(20), 2941.
75 Nowicka A, Lipski M, Parafiniuk M, et al. Journal of Endodontics, 2013, 39(6), 743.
76 Gong V, França R. Journal of Dentistry, 2017, 58, 11.
77 Wu C, Zhang C, Yan X Y, et al. Surface and Coatings Technology, 2023, 468, 129746.
78 Zhang S Y, Fang K, Ye F F, et al. Applied Surface Science, 2025, 682, 161596.
[1] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[2] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[3] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[4] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[5] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[6] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[7] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[8] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[9] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[10] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[11] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[12] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[13] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[14] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[15] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed