Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010243-5    https://doi.org/10.11896/cldb.24010243
  无机非金属及其复合材料 |
离子液体辅助水热法制备BiVO4黄色色料及色度研究
谢志翔1, 彭溢源2, 刘汉语1, 朱嗣承1, 陈婷2,*
1 苏州科技大学化学与生命科学学院, 江苏 苏州 215009
2 苏州科技大学材料科学与器件研究院, 江苏 苏州 215009
Synthesis and Chromatic Properties of BiVO4 Pigment via Ionic Liquid Assisted Hydrothermal Method
XIE Zhixiang1, PENG Yiyuan2, LIU Hanyu1, ZHU Sicheng1, CHEN Ting2,*
1 School of Chemistry and Life, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 10698KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以硝酸铋(Bi(NO3)3·5H2O)和偏钒酸铵(NH4VO3)为主要原料,并采用离子液体1-丁基-3-甲基咪唑溴盐([Bmim]Br)为溶剂,通过离子液体辅助水热法合成了BiVO4黄色色料。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)研究了前驱体pH值、水热反应温度和时间对BiVO4合成及显微形貌的影响,同时采用CIE-L* a* b* 色度仪考察了该色料的色度值。实验结果表明:前驱体溶液pH值对BiVO4色料的合成及形貌有着重要的影响。不同的pH值条件下,反应体系的离子平衡会有所不同,从而影响BiVO4色料的结构和性能。随着pH值从5增大至8,合成产物由片状向柱状转变。当pH=6时,可以合成片状单斜白钨矿型BiVO4黄色色料,平均粒径约4 μm。采用水热法能够实现BiVO4色料的低温合成,合成温度由传统固相法的650 ℃降至160 ℃。随着水热反应温度由160 ℃升至200 ℃,BiVO4色料粒径由4 μm增加至10 μm,团聚现象加重。延长水热反应时间有助于BiVO4晶体的成核与生长,经160 ℃水热反应2 h后,制得的BiVO4色料呈色性能最佳,色度值L*=76.77,a*=2.80,b*=64.59。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢志翔
彭溢源
刘汉语
朱嗣承
陈婷
关键词:  色料  钒酸铋  离子液体  水热法  低温合成    
Abstract: BiVO4 yellow pigment was synthesized by ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim]BF4) assisted hydrothermal method using bismuth nitrate (Bi(NO3)3·5H2O) and ammonium metavanadate (NH4VO3) as raw materials. The effects of the pH value of precursor, hydrothermal temperature and reaction time on the synthesis and morphology of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), while the chromatic value of the BiVO4 pigments was characterized by CIE-L* a* b* color system. The experimental results show that the pH value of precursor has a strong influence on the synthesis and morphology of BiVO4 pigments. It can change the ionic balance of precursor, consequently affecting the final structure and properties of BiVO4 pigments. As the pH value increases from 5 to 8, the morphology of BiVO4 pigment change from sheet-shaped to club-shaped. When pH value is 6, BiVO4 pigment with the monoclinic scheelite-structure exhibits sheet-like morphology and particle size is about 4 μm. The BiVO4 pigment can be synthesized via hydrothermal method at low-temperature. Compared with the conventional solid state method, its synthesis temperature is decreased from 650 ℃ to 160 ℃. Increase of hydrothermal temperature from 160 ℃ to 200 ℃ results in the increase of the size of samples from 4 μm to 10 μm and serious aggregation. It is found that longer reaction time is beneficial for BiVO4 crystal to nucleate and grow. After hydrothermal reaction at 160 ℃ for 2 h, the as-prepared BiVO4 pigment exhibits excellent chromatic value, as L*=76.77, a*=2.80, b*=64.59.
Key words:  pigment    bismuth vanadate    ionic liquid    hydrothermal method    low temperature synthesis
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB32  
基金资助: 国家自然科学基金(52062019;22001187);江苏省高等学校基础科学(自然科学)研究重大项目(24KJA430013)
通讯作者:  *陈婷,博士,苏州科技大学教授、硕士研究生导师。目前主要从事荧光量子点方面的研究工作。chenting@mail.usts.edu.cn   
作者简介:  谢志翔,博士,苏州科技大化学与生命科学学院副教授。目前主要研究领域为无机非金属材料。
引用本文:    
谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
XIE Zhixiang, PENG Yiyuan, LIU Hanyu, ZHU Sicheng, CHEN Ting. Synthesis and Chromatic Properties of BiVO4 Pigment via Ionic Liquid Assisted Hydrothermal Method. Materials Reports, 2025, 39(7): 24010243-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010243  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010243
1 Yuan L, Han A J, Ye M Q, et al. Solar Energy, 2018, 163, 453.
2 Sameera S, Rao P P, Vineetha J, et al. Dyes and Pigments, 2014, 104, 41.
3 Athira K V R, Prabhakar R A, Rajesh K B. Inorganic Chemistry Communications, 2023, 149, 110416
4 Wang X W, Mu B, Zhang Z, et al. Composites Part B, 2019, 174, 107035
5 Ling J D, Jia H L, Zhan Y M, et al. RSC Advances, 2018, 8(44), 24796.
6 Chen S, Jiang Y, Lin H. ACS Omega, 2020, 5(15), 8927.
7 Cheng C, Shi Q, Zhu W, et al. Nanomaterials, 2023, 13, 1522
8 Li C, Qiao X K, Jian J, et al. Chemical Engineering Journal, 2019, 375, 121924
9 Ullah H, Tahir A A, Mallick T K. Applied Catalysis B: Environmental, 2018, 224, 895.
10 Tokunaga S, Kato H, Kudo A. Chemistry of Materials, 2001, 13(12), 4624.
11 Ae R L, Sung H C, Min S J. Journalof Physics:Condensed Matter, 1995, 7(37), 7309.
12 Kudo A, Ueda K, Kato H, et al. Catalysis Letters, 1998, 53(3-4), 229.
13 Yu J, Zhang Y, Kudo A. Journal of Solid State Chemistry, 2009, 182(2), 223.
14 Liu H M, Nakamura R, Nakato Y. Journal of the Electrochemical Society, 2005, 152(11), G856.
15 Ge L, Zhang X H. Journal of Inorganic Materials, 2009(3), 453 (in Chinese).
戈磊, 张宪华. 无机材料学报, 2009(3), 453.
16 Wilkes J S. Green Chemistry, 2002, 4(2), 73.
17 Macearlane D R, Pringle J M, Johansson K M, et al. Chemical Communications, 2006(18), 1905.
18 Anderson J L, Ding R F, Ellern A, et al. Journal of the American Chemical Society, 2005, 127(2), 593.
19 Ting C, Zhi X X, Wei H J, et al. Journal of Advanced Ceramics, 2016, 5(2), 111.
20 Meng Y, Huang J F, Fei J, et al. Journal of the Chinese Ceramic Society, 2013, 41(5), 720 (in Chinese).
孟岩, 黄剑峰, 费杰, 等. 硅酸盐学报, 2013, 41(5), 720.
21 Obregón S, Caballero A, Colón G. Applied Catalysis B: Environmental, 2012, 117, 59.
22 Guo J, Zhu Y, Zhang Y M, et al. Journal of Inorganic Materials, 2012, 27(1), 26 (in Chinese).
郭佳, 朱毅, 张渊明, 等. 无机材料学报, 2012, 27(1), 26.
23 Fan W, Song X, Bu Y, et al. Journal of Physical Chemistry B, 2006, 110(46), 23247.
[1] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[2] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[3] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[4] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[5] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[6] 刘会茹, 张苗苗, 徐智策. 离子液体凝胶催化剂在合成乙酸正龙脑酯中的应用[J]. 材料导报, 2024, 38(11): 23080135-7.
[7] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[8] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[9] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[10] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[11] 石佳建, 李宝河, 息剑峰, 刘丹, 刘帅, 王桂玲. 离子液体调控材料物性的研究进展[J]. 材料导报, 2023, 37(13): 21050195-8.
[12] 颜宇豪, 郭洋, 汪李超, 侯成义, 张青红, 李耀刚, 秦宗益, 王宏志. 基于离子液体电解质的柔性电化学O2传感器性能研究[J]. 材料导报, 2023, 37(12): 21040216-5.
[13] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[14] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[15] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed