Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21050195-8    https://doi.org/10.11896/cldb.21050195
  无机非金属及其复合材料 |
离子液体调控材料物性的研究进展
石佳建, 李宝河*, 息剑峰, 刘丹, 刘帅, 王桂玲
北京工商大学人工智能学院,北京 102488
A Review of Using Ionic Liquids to Control Materials Properties
SHI Jiajian, LI Baohe*, XI Jianfeng, LIU Dan, LIU Shuai, WANG Guiling
School of Artificial Intelligence, Beijing Technology and Business University, Beijing 102488, China
下载:  全 文 ( PDF ) ( 7568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 载流子浓度是影响材料特性的重要物理参量,通过电场调控材料的载流子浓度可以对材料的电学、磁学、光学甚至结构特性都产生非常重要的影响。静电场效应调控晶体管结构中的载流子浓度是改变凝聚态物质电子状态的重要手段,近几年,使用离子液体(Ionic liquid)作为晶体管的栅极电介质引起了广泛的关注。离子液体是电解质由可移动的阴阳有机离子构成,在室温下为液态的物质。将离子液体作为晶体管的栅极电介质可以形成双电层晶体管(Electric-double-layer transistors)对材料物性进行调控。离子液体调控的巧妙之处在于离子液体中的阳离子和材料中的电子形成的双电层结构本质上是一个纳米量级的平行板电容器,它具有极大的电容值,可以实现比普通晶体管更大范围的场效应调控。离子液体调控技术可以分为静电场调控和电化学调控。本文基于离子液体调控技术可以原位、大范围、可逆地调控材料载流子浓度的优点,主要综述了利用离子液体调控技术对薄膜结构相变、磁学特性、输运特性、热传导特性等物理性质调控的研究进展,并展望了离子液体调控技术在智能玻璃、人工神经网络器件等方向的未来应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石佳建
李宝河
息剑峰
刘丹
刘帅
王桂玲
关键词:  离子液体调控  结构相变  输运特性  物性调控    
Abstract: Carrier density is an important factor that affects the physical properties of materials. Tuning the carrier density by an electric field can have an important impact on the electronic, magnetic, optical, or even structural properties of a material. Controlling the carrier density in a transistor using electric fields is an important approach for tuning the electronic states of condensed matter. Recently, transistors using ionic liquids as gate dielectrics have attracted significant attention. Ionic liquids are a type of aqueous electrolyte that conducts electricity through the movement of organic cations and anions. By using ionic liquids as gate dielectrics, an electric double-layer transistor can be fabricated for material-property control. The major advantage of ionic-liquid gating is that the electric double layer formed by the cations and electrons is essentially a nanoscale parallel-plate capacitor with a very large specific capacitance. Ionic liquid technology can realise a wider tunable range of carrier density than traditional transistor technology. With the rapid development of ionic liquid technology, two paradigms, electrostatic field-effect tuning and electrochemical doping, have been recently explored. Based on several beneficial aspects of in situ, reversible, and large-scale tunability of the ionic liquid technology, we herewith make a comprehensive review of the research progress on ionic-liquid-controlled structural transition, magnetic properties, electrical transport, and thermal conduction of thin films. The future prospects of ionic-liquid-control technology for use in smart glass and artificial neural network devices have also been suggested.
Key words:  ionic liquid control    structural phase transition    transport properties    physical property control
发布日期:  2023-07-10
ZTFLH:  TB34  
基金资助: 北京市自然科学基金(2214070);国家自然科学基金(52001012;62075245);北京市人才培养质量建设项目(19008021064);科技创新服务能力建设重点项目(19002020124)
通讯作者:  *李宝河,北京工商大学物理系教授、人工智能学院副院长,兼任北京物理学会常务理事,1994年6月毕业于河北师范大学物理系,获理学学士学位,1997年6月毕业于吉林大学物理系凝聚态物理专业,获理学硕士学位,2005年毕业于北京科技大学材料科学与工程学院材料物理与化学专业,获工学博士学位,2008年晋升教授。主要研究领域为磁性物理及磁性材料、纳米材料结构及物性。近年来主持多项国家自然科学基金项目、北京市自然科学基金项目和北京市教委科技计划重点项目。发表论文100余篇,其中80余篇论文被SCI收录,出版专著1部。lbhe@th.btbu.edu.cn   
作者简介:  石佳建,2019年毕业于保定学院,获得理学学士学位。2022年毕业于北京工商大学物理系,获得硕士学位。在李宝河教授和息剑峰老师的指导下进行研究,目前主要研究领域为过渡金属氧化物薄膜生长与物性调控。
引用本文:    
石佳建, 李宝河, 息剑峰, 刘丹, 刘帅, 王桂玲. 离子液体调控材料物性的研究进展[J]. 材料导报, 2023, 37(13): 21050195-8.
SHI Jiajian, LI Baohe, XI Jianfeng, LIU Dan, LIU Shuai, WANG Guiling. A Review of Using Ionic Liquids to Control Materials Properties. Materials Reports, 2023, 37(13): 21050195-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050195  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21050195
1 Ahn C H, Triscone J M, Mannhart J. Nature, 2003, 424(6952), 1015.
2 Ueno K, Shimotani H, Yuan H T, et al. Journal of the Physical Society of Japan, 2014, 83(3), 032001.
3 Goldman A M. Annual Review of Materails Research, 2014, 44, 45.
4 Fujimoto T, Awaga K. Physicial Chemistry Chemical Physics, 2013, 15(23), 8983.
5 Du H W, Lin X, Xu Z M, et al. Journal of Materials Science, 2015, 50(17), 5641.
6 Liu N, Chen R, Wan Q. Sensors, 2019, 19(15), 3425.
7 Wang M, Shen S C, Ni J Y, et al. Advanced Materlals, 2017, 29(46), 1703628.
8 Zheng L M, Wang X R, Lyu W M, et al. Nature Communications, 2018, 9, 1897.
9 Song C, Cui B, Li F, et al. Progress in Materlals Science, 2017, 87, 33.
10 Cui B, Song C, Li F, et al. Physical Review Applied, 2017, 8(4), 044007.
11 Leighton C. Nature Materlals, 2019, 18(1), 13.
12 Yuan H T, Shimotani H, Ye J T, et al. Journal of the American Chemical Society, 2010, 132(51), 18402.
13 Jeong J, Aetukuri N, Graf T, et al. Science, 2013, 339(6126), 1402.
14 Walter J, Wang H L, Luo B, et al. ACS Nano, 2016, 10(8), 7799.
15 Liu H J, Dong Y Q, Xu D W, et al. Advanced Materials, 2018, 30(52), 1804775.
16 Zeng S W, Yin X M, Herng T S, et al. Physicial Review Letters, 2018, 121(14), 146802.
17 Cui B, Song C, Mao H J, et al. Advanced Functional Materials, 2016, 26(5), 753.
18 Sun Y F, Kotiuga M, Lim D, et al. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(39), 9672.
19 Herklotz A, Guo E J, Wong A T, et al. Nano Letters, 2017, 17(3), 1665.
20 Wang M, Shen S C, Ni J Y, et al. Advanced Materials, 2017, 29(46), 1703628.
21 Zheng L M, Wang X R, Lü W M, et al. Nature Communications, 2018, 9, 1897.
22 Zhang Y J, Ye J T, Matsuhashi Y, et al. Nano Letters, 2012, 12(3), 1136.
23 Zhang Y J, Oka T, Suzuki R, et al. Science, 2014, 344(6185), 725.
24 Wang Y, Xiao J, Zhu H Y, et al. Nature, 2017, 550(7677), 487.
25 Liang L, Shan J, Chen Q H, et al. Physical Review B, 2018, 98(13), 134402.
26 Liang L, Chen Q H, Lu J M, et al. Science Advances, 2018, 4(4), eaar2030.
27 Saito Y, Nojima T, Iwasa Y. Superconductor Science & Technology, 2016, 29(9), 093001.
28 Cui Y, Zhang G H, Li H B, et al. Science Bulletin, 2018, 63(1), 11.
29 Weisheit M, Faehler S, Marty A, et al. Science, 2007, 315(5810), 349.
30 Yamada Y, Ueno K, Fukumura T, et al. Science, 2011, 332(6033), 1065.
31 Jeong J, Aetukuri N, Graf T, et al. Science, 2013, 339(6126), 1402.
32 Tarascon J M, Armand M. Nature, 2001, 414(6861), 359.
33 Granqvist C G. Thin Solid Films, 2014, 564, 1.
34 Steele B C H, Heinzel H. Nature, 2001, 414(6861), 345.
35 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548.
36 Song C, Cui B, Li F, et al. Progress in Materials Science, 2017, 87, 33.
37 Bisri S Z, Shimizu S, Nakano M, et al. Advanced Materials, 2017, 29(25), 1607054.
38 Manca N, Pellegrino L, Marré D. Applied Physics Letters, 2015, 106(20), 203502.
39 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057.
40 Hong D S, Wang W X, Chen Y S, et al. Applied Physics Letters, 2014, 105(11), 113504.
41 Li Z L, Shen S C, Tian Z J, et al. Nature Communications, 2020, 11(1), 184.
42 Ge C, Liu C X, Zhou Q L, et al. Advanced Materials, 2019, 31(19), 1900379.
43 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215.
44 Bollinger A T, Dubuis G, Yoon J, et al. Nature, 2011, 472(7344), 458.
45 Shiogai J, Ito Y, Mitsuhashi T, et al. Nature Physics, 2015, 12(1), 42.
46 Shibuya K, Sawa A. Advanced Electronic Materials, 2016, 2(2), 1500131.
47 Bisri S Z, Shimizu S, Nakano M, et al. Advanced Materials, 2017, 29(25), 1607054.
48 Gu Y D, Xu K, Song C, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19584.
49 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215.
50 Wang M, Shen S, Ni J, et al. Advanced Materials, 2017, 29(46), 1703628.
51 Cui Y, Zhang G H, Li H B, et al. Science Bulletin, 2018, 63(1), 11.
52 Lei B, Xiang Z J, Lu X F, et al. Physical Review B, 2016, 93(6), 060501.
53 Muñoz A, Calle C, Alonso J A, et al. Physical Review B, 2008, 78(5), 054404.
54 Ueno K, Nakamura S, Shimotani H, et al. Nature Materials, 2008, 7(11), 855.
55 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548.
56 Ge C, Li G, Zhou Q, et al. Nano Energy, 2020, 67, 104268.
57 Zhang Y C, Cui B, Yang H, et al. ACS Nano, 2020, 14(7), 1021.
58 Lu N P, Zhang P F, Zhang Q H, et al. Nature, 2017, 546(7656), 124.
59 Granqvist C G. Thin Solid Films, 2014, 564, 1.
60 Llordés A, Garcia G, Gazquez J, et al. Nature, 2013, 500(7462), 323.
61 Wang M, Shen S C, Ni J Y, et al. Advanced Materials, 2017, 29(46), 1703628.
62 Wang M, Sui X L, Wang Y J, et al. Advanced Materials, 2019, 31(16), 1900458.
63 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215.
64 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057.
65 Gu Y D, Xu K, Song C, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19584.
66 Fan R, Kinane C J, Charlton T R, et al. Physical Review B, 2010, 82(18), 184418.
67 Wehmeyer G, Yabuki T, Monachon C, et al. Applied Physics Review, 2017, 4(4), 041304.
68 Gambardella P, Stepanow S, Dmitriev A, et al. Nature Materials, 2009, 8(3), 189.
69 Yamada Y, Ueno K, Fukumura T, et al. Science, 2011, 332(6033), 1065.
70 Adler P, Lebon A, Ulrich C, et al. Physical Review B, 2006, 73(9), 094451.
71 Das T, Nicholas J D, Qi Y, et al. Journal of Materials Chemistry A, 2017, 5(9), 4493.
72 Young J, Rondinelli J M. Physical Review B, 2015, 92(17), 174111.
73 Ge C, Liu C X, Zhou Q L, et al. Advanced Materials, 2019, 31(19), 1900379.
74 Yuan H T, Shimotani H, Tsukazaki A, et al. Advanced Functional Materials, 2009, 19(7), 1046.
75 Ueno K, Nakamura S, Shimotani H, et al. Nature Nanotechnology, 2011, 6(7), 408.
76 Wehmeyer G, Yabuki T, Monachon C, et al. Applied Physics Review, 2017, 4(4), 041304.
77 Abeles B. Physical Review, 1963, 131, 1906.
78 Lu Q Y, Chen Y, Bluhm H, et al. Journal of Materials Chemistry C, 2016, 120(42), 24148.
79 Lu Q Y, Yildiz B. Nano Letters, 2016, 16(2), 1186.
80 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057.
81 Yao P, Wu H Q, Gao B, et al. Nature Communications, 2017, 8, 15199.
82 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548.
83 Xu W, Min S Y, Hwang H. Science Advance, 2016, 2(6), e1501326.
84 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548.
85 John R A, Yantara N, Ng Y F, et al. Advanced Materials, 2018, 30(51), 1805454.
86 Chum H L, Koch V R, Miller L L, et al. Journal of the American Chemical Society, 1975, 97(11), 3264.
87 Onodera R, Seki Y, Seki S, et al. Applied Physics Express, 2013, 6(2), 110.
[1] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[2] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[5] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[6] 王昕阳, 魏世丞, 梁义, 王玉江, 王博. 微波吸收复合材料体系及其计算机辅助设计的研究进展[J]. 材料导报, 2023, 37(11): 21050233-10.
[7] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[8] 赵瑞钰, 欧阳琪, 马名生, 陆毅青, 魏红康, 刘志甫. Bi0.5Na0.5TiO3和Bi0.5K0.5TiO3含量对三元固溶体系无铅PTC热敏陶瓷性能的影响[J]. 材料导报, 2023, 37(10): 21110026-6.
[9] 顾晓然, 李顺, 唐宇, 赵孔勋, 白书欣. 超级铝热剂的发展现状[J]. 材料导报, 2023, 37(10): 21060211-8.
[10] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[11] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[12] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[13] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[14] 刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
[15] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed