Abstract: Carrier density is an important factor that affects the physical properties of materials. Tuning the carrier density by an electric field can have an important impact on the electronic, magnetic, optical, or even structural properties of a material. Controlling the carrier density in a transistor using electric fields is an important approach for tuning the electronic states of condensed matter. Recently, transistors using ionic liquids as gate dielectrics have attracted significant attention. Ionic liquids are a type of aqueous electrolyte that conducts electricity through the movement of organic cations and anions. By using ionic liquids as gate dielectrics, an electric double-layer transistor can be fabricated for material-property control. The major advantage of ionic-liquid gating is that the electric double layer formed by the cations and electrons is essentially a nanoscale parallel-plate capacitor with a very large specific capacitance. Ionic liquid technology can realise a wider tunable range of carrier density than traditional transistor technology. With the rapid development of ionic liquid technology, two paradigms, electrostatic field-effect tuning and electrochemical doping, have been recently explored. Based on several beneficial aspects of in situ, reversible, and large-scale tunability of the ionic liquid technology, we herewith make a comprehensive review of the research progress on ionic-liquid-controlled structural transition, magnetic properties, electrical transport, and thermal conduction of thin films. The future prospects of ionic-liquid-control technology for use in smart glass and artificial neural network devices have also been suggested.
石佳建, 李宝河, 息剑峰, 刘丹, 刘帅, 王桂玲. 离子液体调控材料物性的研究进展[J]. 材料导报, 2023, 37(13): 21050195-8.
SHI Jiajian, LI Baohe, XI Jianfeng, LIU Dan, LIU Shuai, WANG Guiling. A Review of Using Ionic Liquids to Control Materials Properties. Materials Reports, 2023, 37(13): 21050195-8.
1 Ahn C H, Triscone J M, Mannhart J. Nature, 2003, 424(6952), 1015. 2 Ueno K, Shimotani H, Yuan H T, et al. Journal of the Physical Society of Japan, 2014, 83(3), 032001. 3 Goldman A M. Annual Review of Materails Research, 2014, 44, 45. 4 Fujimoto T, Awaga K. Physicial Chemistry Chemical Physics, 2013, 15(23), 8983. 5 Du H W, Lin X, Xu Z M, et al. Journal of Materials Science, 2015, 50(17), 5641. 6 Liu N, Chen R, Wan Q. Sensors, 2019, 19(15), 3425. 7 Wang M, Shen S C, Ni J Y, et al. Advanced Materlals, 2017, 29(46), 1703628. 8 Zheng L M, Wang X R, Lyu W M, et al. Nature Communications, 2018, 9, 1897. 9 Song C, Cui B, Li F, et al. Progress in Materlals Science, 2017, 87, 33. 10 Cui B, Song C, Li F, et al. Physical Review Applied, 2017, 8(4), 044007. 11 Leighton C. Nature Materlals, 2019, 18(1), 13. 12 Yuan H T, Shimotani H, Ye J T, et al. Journal of the American Chemical Society, 2010, 132(51), 18402. 13 Jeong J, Aetukuri N, Graf T, et al. Science, 2013, 339(6126), 1402. 14 Walter J, Wang H L, Luo B, et al. ACS Nano, 2016, 10(8), 7799. 15 Liu H J, Dong Y Q, Xu D W, et al. Advanced Materials, 2018, 30(52), 1804775. 16 Zeng S W, Yin X M, Herng T S, et al. Physicial Review Letters, 2018, 121(14), 146802. 17 Cui B, Song C, Mao H J, et al. Advanced Functional Materials, 2016, 26(5), 753. 18 Sun Y F, Kotiuga M, Lim D, et al. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(39), 9672. 19 Herklotz A, Guo E J, Wong A T, et al. Nano Letters, 2017, 17(3), 1665. 20 Wang M, Shen S C, Ni J Y, et al. Advanced Materials, 2017, 29(46), 1703628. 21 Zheng L M, Wang X R, Lü W M, et al. Nature Communications, 2018, 9, 1897. 22 Zhang Y J, Ye J T, Matsuhashi Y, et al. Nano Letters, 2012, 12(3), 1136. 23 Zhang Y J, Oka T, Suzuki R, et al. Science, 2014, 344(6185), 725. 24 Wang Y, Xiao J, Zhu H Y, et al. Nature, 2017, 550(7677), 487. 25 Liang L, Shan J, Chen Q H, et al. Physical Review B, 2018, 98(13), 134402. 26 Liang L, Chen Q H, Lu J M, et al. Science Advances, 2018, 4(4), eaar2030. 27 Saito Y, Nojima T, Iwasa Y. Superconductor Science & Technology, 2016, 29(9), 093001. 28 Cui Y, Zhang G H, Li H B, et al. Science Bulletin, 2018, 63(1), 11. 29 Weisheit M, Faehler S, Marty A, et al. Science, 2007, 315(5810), 349. 30 Yamada Y, Ueno K, Fukumura T, et al. Science, 2011, 332(6033), 1065. 31 Jeong J, Aetukuri N, Graf T, et al. Science, 2013, 339(6126), 1402. 32 Tarascon J M, Armand M. Nature, 2001, 414(6861), 359. 33 Granqvist C G. Thin Solid Films, 2014, 564, 1. 34 Steele B C H, Heinzel H. Nature, 2001, 414(6861), 345. 35 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548. 36 Song C, Cui B, Li F, et al. Progress in Materials Science, 2017, 87, 33. 37 Bisri S Z, Shimizu S, Nakano M, et al. Advanced Materials, 2017, 29(25), 1607054. 38 Manca N, Pellegrino L, Marré D. Applied Physics Letters, 2015, 106(20), 203502. 39 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057. 40 Hong D S, Wang W X, Chen Y S, et al. Applied Physics Letters, 2014, 105(11), 113504. 41 Li Z L, Shen S C, Tian Z J, et al. Nature Communications, 2020, 11(1), 184. 42 Ge C, Liu C X, Zhou Q L, et al. Advanced Materials, 2019, 31(19), 1900379. 43 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215. 44 Bollinger A T, Dubuis G, Yoon J, et al. Nature, 2011, 472(7344), 458. 45 Shiogai J, Ito Y, Mitsuhashi T, et al. Nature Physics, 2015, 12(1), 42. 46 Shibuya K, Sawa A. Advanced Electronic Materials, 2016, 2(2), 1500131. 47 Bisri S Z, Shimizu S, Nakano M, et al. Advanced Materials, 2017, 29(25), 1607054. 48 Gu Y D, Xu K, Song C, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19584. 49 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215. 50 Wang M, Shen S, Ni J, et al. Advanced Materials, 2017, 29(46), 1703628. 51 Cui Y, Zhang G H, Li H B, et al. Science Bulletin, 2018, 63(1), 11. 52 Lei B, Xiang Z J, Lu X F, et al. Physical Review B, 2016, 93(6), 060501. 53 Muñoz A, Calle C, Alonso J A, et al. Physical Review B, 2008, 78(5), 054404. 54 Ueno K, Nakamura S, Shimotani H, et al. Nature Materials, 2008, 7(11), 855. 55 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548. 56 Ge C, Li G, Zhou Q, et al. Nano Energy, 2020, 67, 104268. 57 Zhang Y C, Cui B, Yang H, et al. ACS Nano, 2020, 14(7), 1021. 58 Lu N P, Zhang P F, Zhang Q H, et al. Nature, 2017, 546(7656), 124. 59 Granqvist C G. Thin Solid Films, 2014, 564, 1. 60 Llordés A, Garcia G, Gazquez J, et al. Nature, 2013, 500(7462), 323. 61 Wang M, Shen S C, Ni J Y, et al. Advanced Materials, 2017, 29(46), 1703628. 62 Wang M, Sui X L, Wang Y J, et al. Advanced Materials, 2019, 31(16), 1900458. 63 Perez-Munoz A M, Schio P, Poloni R, et al. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2), 215. 64 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057. 65 Gu Y D, Xu K, Song C, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19584. 66 Fan R, Kinane C J, Charlton T R, et al. Physical Review B, 2010, 82(18), 184418. 67 Wehmeyer G, Yabuki T, Monachon C, et al. Applied Physics Review, 2017, 4(4), 041304. 68 Gambardella P, Stepanow S, Dmitriev A, et al. Nature Materials, 2009, 8(3), 189. 69 Yamada Y, Ueno K, Fukumura T, et al. Science, 2011, 332(6033), 1065. 70 Adler P, Lebon A, Ulrich C, et al. Physical Review B, 2006, 73(9), 094451. 71 Das T, Nicholas J D, Qi Y, et al. Journal of Materials Chemistry A, 2017, 5(9), 4493. 72 Young J, Rondinelli J M. Physical Review B, 2015, 92(17), 174111. 73 Ge C, Liu C X, Zhou Q L, et al. Advanced Materials, 2019, 31(19), 1900379. 74 Yuan H T, Shimotani H, Tsukazaki A, et al. Advanced Functional Materials, 2009, 19(7), 1046. 75 Ueno K, Nakamura S, Shimotani H, et al. Nature Nanotechnology, 2011, 6(7), 408. 76 Wehmeyer G, Yabuki T, Monachon C, et al. Applied Physics Review, 2017, 4(4), 041304. 77 Abeles B. Physical Review, 1963, 131, 1906. 78 Lu Q Y, Chen Y, Bluhm H, et al. Journal of Materials Chemistry C, 2016, 120(42), 24148. 79 Lu Q Y, Yildiz B. Nano Letters, 2016, 16(2), 1186. 80 Jeen H, Choi W S, Biegalski M D, et al. Nature Materials, 2013, 12(11), 1057. 81 Yao P, Wu H Q, Gao B, et al. Nature Communications, 2017, 8, 15199. 82 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548. 83 Xu W, Min S Y, Hwang H. Science Advance, 2016, 2(6), e1501326. 84 Yang J T, Ge C, Du J Y, et al. Advanced Materials, 2018, 30(34), 1801548. 85 John R A, Yantara N, Ng Y F, et al. Advanced Materials, 2018, 30(51), 1805454. 86 Chum H L, Koch V R, Miller L L, et al. Journal of the American Chemical Society, 1975, 97(11), 3264. 87 Onodera R, Seki Y, Seki S, et al. Applied Physics Express, 2013, 6(2), 110.