Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21070003-6    https://doi.org/10.11896/cldb.21070003
  无机非金属及其复合材料 |
温度作用后花岗岩微观孔隙结构和渗透率的研究
高红梅1,2, 兰永伟3, 郭楠1,*
1 东北林业大学土木与交通学院,哈尔滨 150040
2 黑龙江科技大学建筑工程学院,哈尔滨 150022
3 黑龙江科技大学矿业工程学院,哈尔滨 150022
Study on Microscopic Pore Structure and Permeability of Granite After Temperature Action
GAO Hongmei1,2, LAN Yongwei3, GUO Nan1,*
1 School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
2 School of Architecture and Civil Engineering , Heilongjiang University of Science and Technology, Harbin 150022, China
3 School of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
下载:  全 文 ( PDF ) ( 9945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究温度作用下花岗岩的孔隙结构和渗流特性,对热处理后(25~600 ℃)的花岗岩试件进行了扫描电镜测试、高压压汞实验和渗流实验,从扫描电镜的镜下特征、毛管压力曲线形态特征、孔容、孔径分布、孔隙度、渗透率等多方面进行了研究,修正了常规的渗透率预测模型,对模型计算渗透率与实测渗透率进行了对比分析。研究结果表明:花岗岩内部含有初始微裂隙和孔洞,孔洞形状不规则;随着温度升高,花岗岩孔喉不断发育,花岗岩压汞曲线中进汞曲线逐渐变得平滑,退汞率逐渐升高,试件中微孔、过渡孔、中孔、大孔的孔容和总孔容总体逐渐增大,孔径分布范围扩大,连通性增强,孔隙度呈现增大趋势;花岗岩渗透率随温度总体呈指数函数增加,400 ℃之后渗透率大幅增大;试件中大孔数量增加是花岗岩渗透率大幅提升的主要原因;对高温花岗岩而言,利用修正的Winland模型得到渗透率的预测值和实验测试值较接近,表明孔喉半径特征值、孔隙度共同影响下花岗岩的渗透率模型更为合理。研究结果将为高温岩体地热开发工程的方案设计提供一定的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高红梅
兰永伟
郭楠
关键词:  微观孔隙结构  孔隙度  孔径分布  渗透率预测模型    
Abstract: To investigate the effect of temperature on the pore structure and seepage characteristics of granite, samples were subjected to a scanning electron microscopy (SEM) test, a high-pressure mercury injection test and a seepage test. From SEM of the microscopic characteristics, morphological characteristics of the capillary pressure curve, entrance, pore size distribution, porosity, permeability and other aspects are stu-died. The conventional permeability prediction models have been corrected, and the calculated permeability and measured permeability are compared and analysed. The results showed that there were initial micro-cracks and pores in the granite, with irregular pore shapes. With the increase in temperature, the pore throat of the granite develops continuously as the temperature rises, and the mercury inflow curve in the granite mercury injection curve becomes smoother, and the mercury removal rate gradually increases. The pore volume and total pore volume of micropores, mesopores and transition pores in the sample gradually become larger, the pore size distribution range expands, the connectivity enhances and the porosity increases. Granite's permeability generally increases exponentially with temperature and increases greatly after 400 ℃. The increase in the number of large pores in the sample is the primary reason for the increased permeability of granite. The permeability predicted by the modified Winland model for high-temperature granite is close to the permeability tested by the experiment, indicating that the granite permeability model is more reasonable under the combined influence of the characteristic value of pore-throat radius and porosity. The research results will provide a theoretical basis for the scheme design of high-temperature rock mass geothermal development engineering.
Key words:  microscopic pore structure    porosity    pore size distribution    permeability prediction model
发布日期:  2023-07-10
ZTFLH:  TU45  
基金资助: 黑龙江省自然基金项目(LH2019D011);黑龙江省普通高等学校采矿工程重点实验室开放课题(2013-KF04)
通讯作者:  *郭楠,东北林业大学土木工程学院教授、博士研究生导师,国家一级注册结构工程师。2002年7月毕业于哈尔滨工业大学,获得学士学位;2002年9月—2009年6月于哈尔滨工业大学硕博连读;2009年6月毕业于哈尔滨工业大学,获得博士学位。从事预应力胶合竹、木结构方面的研究工作。主持国家自然科学基金、林业局重点项目,省自然科学基金面上项目等共10项,发表学术论文30余篇,其中SCI、EI检索28篇,出版专著2部,获得专利18项,获得科技奖励2项。snowguonan@nefu.edu.cn   
作者简介:  高红梅,黑龙江科技大学教授、硕士研究生导师。东北林业大学在读博士,2002年6月毕业于黑龙江科技学院,获得学士学位,2005年6月毕业于辽宁工程技术大学,获得硕士学位。主要从事岩土工程专业的教学与科研任务。先后主持科研项目10余项,其中国家级项目 1 项,省部级项目3项。在国内外重要期刊发表文章 20 余篇,获实用新型专利2项,出版专著1部。
引用本文:    
高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
GAO Hongmei, LAN Yongwei, GUO Nan. Study on Microscopic Pore Structure and Permeability of Granite After Temperature Action. Materials Reports, 2023, 37(13): 21070003-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070003  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21070003
1 Xu X L, Gao F, Shen X M. Journal of China University of Mining and Technology, 2008, 18(3), 13.
2 Zhao Y S, Wan Z J, Kang J R. An introduction to hot dry rock(HDR) geothermal exploitation, Science Press, China, 2004(in Chinese)
赵阳升, 万志军, 康建荣. 高温岩体地热导论, 科学出版社, 2004.
3 Jing L R, Feng X T. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4), 833 (in Chinese).
井兰如, 冯夏庭. 岩石力学与工程学报, 2006, 25(4), 833.
4 Dwivedi R D, Goel R K, Prasad V V. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3), 303.
5 An L, Zhou H W, Yang S, et al. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2), 2234(in Chinese).
安露, 周宏伟, 杨帅, 等. 石力学与工程学报, 2019, 38(S2), 2234.
6 Gao H M, Lan Y W, Zhou L, et al. Journal of Jilin University, 2017, 47(6), 1795 ( in Chinese).
高红梅, 兰永伟, 周莉, 等. 吉林大学学报, 2017, 47(6), 1796.
7 Wu J Y. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2), 301 (in Chinese).
吴建营. 力学学报, 2021, 53(2), 301.
8 Shao, J X, Hu Y Q, Liu Z J, et al. Journal of Taiyuan University of Technology, 2020, 51(4), 604(in Chinese)
邵继喜, 胡耀青, 刘志军, 等. 太原理工大学学报, 2020, 51(4), 604.
9 Liu X J, Xiong J, Liang L X. Journal of Natural Gas Science and Engineering, 2015, 22(3), 62.
10 Zhang Y, Liu J C, Xu H, et al. Acta Pctrolei Sinica, 2017, 38(9), 1036.
11 Gao H M, Lan Y W, Guo N. Materials, 2021, 14(21), 1.
12 Chen J K, Zhu Y M, Cui Z B. Lithologic Reservoirs, 2018, 30(1), 55.
13 Ouyan S Q, Sun W, Wu Y P, et al. Geological Science and Technology Information, 2019, 38(2), 199(in Chinese).
欧阳思琪, 孙卫, 吴育平, 等. 地质科技情报, 2019, 38(2), 199.
14 Xiong L, Pang H Q, Zhao Y, et al. Reservoir Evaluation and Development, 2021, 11(2), 20 ( in Chinese).
熊亮, 庞河清, 赵勇, 等. 油气藏评价与开发, 2021, 11(2), 20.
15 Feng P, Xu Y, Dai F. International Journal of Rock Mechanics and Mining Sciences, 2021, 38(2), 104.
16 Liu Z J, Yang D, Hu Y Q, et al. Energies, 2018, 11(5), 1.
17 Xu X L, Gao F, Shen X M. Rock and Soil Mechanics, 2010, 31(6), 175.
18 Yin W T, Zhao Y S , Feng Z J. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11), 2234 (in Chinese).
阴伟涛, 赵阳升, 冯子军. 岩石力学与工程学报, 2020, 39(11), 2234.
19 Zhang Z Z, Gao F, Gao Y N. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12), 2426(in Chinese).
张志镇, 高峰, 高亚楠. 岩石力学与工程学报, 2016, 35(12), 2426.
20 Feng Z J, Zhao Y S, Zhang Y. Applied Thermal Engineering, 2018, 13(3), 194.
21 Zhao Y S, Wan Z J, Feng Z J. Geomech Geophys Geo-energy Geo-resour, 2017, 23 (3), 199.
22 Geraud Y. Geophysical Research Letters, 1994, 21(11), 979.
23 Jin P H, Hu Y Q, Shao J X, et al. Journal of Taiyuan University of Technology, 2019, 50(4), 479 (in Chinese).
靳佩桦, 胡耀青, 邵继喜, 等. 太原理工大学学报, 2019, 50(4), 479.
24 Thomeer J H. Journal of Petroleum Technology, 1983, 35(4), 809.
25 Rashid F, Glover P W J, Lorincz D. Marine and Petroleum Geology, 2015, 11(68), 536.
26 Zhao T Y, Ning Z F, Chen G, et al. XinJiang Petroleum Geology, 2020, 41(3), 337 ( in Chinese).
赵天逸, 宁正福, 陈刚, 等. 新疆石油地质, 2020, 41(3), 337.
27 Kolodzie S J. Proceedings of the National Academy of Sciences of the United States of America, 1955, 41(3), 150.
28 Swanson B F. Journal of Petroleum Technology, 1981, 33(12), 2498.
29 Song Y, Li Z, Jiang Z X. Petroleum Exploration and Development, 2017, 44( 4), 638.
30 Sun Q, Zhang Z Z, Xue L, et al. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5), 935 (in Chinese).
孙强, 张志镇, 薛雷, 等. 岩石力学与工程学报, 2013, 32(5), 935.
31 Davy C A, Skoczylas F, Barnichon J D, et al. Physics and Chemistry of the Earth, 2007(32), 667.
32 Luo Z T, Wang Y C. Pore structure of oil and gas reservoirs, Science Press, China, 1986(in Chinese).
罗蛰潭, 王允诚. 油气储集层的孔隙结构, 科学出版社, 1986.
[1] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[2] 滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
[3] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[4] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed