Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21050041-7    https://doi.org/10.11896/cldb.21050041
  高分子与聚合物基复合材料 |
连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测
蔡兴瑞1, 万逸飞1, 李翰超2, 宋嘉玲1, 冯志强1, 曾庆丰3, 关康4, 刘建涛1,*
1 西南交通大学机械工程学院,成都 610031
2 电子科技大学材料与能源学院,成都 611731
3 西北工业大学材料科学与工程学院,西安 710072
4 华南理工大学材料科学与工程学院,广州 510641
Digital Modeling of the Natural Microstructures and Evaluation of the Overall Anisotropic Moduli of Ceramic Matrix Composites Toughened by Continuous SiC Fiber Bundles
CAI Xingrui1, WAN Yifei1, LI Hanchao2, SONG Jialing1, FENG Zhiqiang1, ZENG Qingfeng3, GUAN Kang4, LIU Jiantao1,*
1 College of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
3 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
4 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
下载:  全 文 ( PDF ) ( 6219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 围绕陶瓷基复合材料连续增韧相各向异性难以快速建模和宏观模量精准预测困难的问题,本工作结合水平集法和有限元法建立了陶瓷基复合材料复杂微结构数字化自动建模方法及预制体不同区域材料各向异性赋值策略。同时,以二维SiC编织布增韧陶瓷基复合材料(SiCf/SiC)为例,采用细观力学均匀化方法和自编程序实现了兼顾自然孔隙影响的连续纤维增韧陶瓷基复合材料宏观各向异性模量跨尺度准确计算。与已有文献中的SiCf/SiC性能实验数据对比,验证了本工作中建模方法和模量计算算法的有效性。此外,本工作还探究了SiCf/SiC自然孔隙形状及纤维束波纹度比对材料宏观性能的影响机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡兴瑞
万逸飞
李翰超
宋嘉玲
冯志强
曾庆丰
关康
刘建涛
关键词:  陶瓷基复合材料  碳化硅纤维束  宏观各向异性模量  自然孔隙  数字化建模    
Abstract: To properly overcome the difficulties in modeling the anisotropy of continuous toughening phases and in predicting the overall moduli of ceramic matrix composites, this work developed an automatic digital methodology for modeling the complex roughly periodic microstructures together with a convenient technique for assigning the anisotropic material properties of the relevant performs of ceramic matrix composites (CMCs) by combining the level set method and the finite element method. Meanwhile, the CMC toughened by the two-dimensional SiC woven fabric (SiCf/SiC) was taken as an illustration to establish the multiscale computational strategy of accurately evaluating the overall anisotropic moduli of SiCf/SiC taking account of the natural pore effects based on the micromechanics scheme and self-programming. The validity of the digital modeling methodology as well as the computational algorithm for predicting the overall modli of SiCf/SiC in this study was demonstrated by comparing the numerical predictions with the experimental data in the open literature. Furthermore, the influence of the natural pore shapes and the waviness ratio of the fiber bundles were investigated in detail.
Key words:  ceramic matrix composite    SiC fiber bundle    overall anisotropic modulus    natural pores    digital modeling
发布日期:  2023-07-10
ZTFLH:  TB332  
基金资助: 国家重点研发计划(2017YFB0703200);国家科技重大专项(2017-Ⅵ-0007-0077);国家自然科学基金(51305362;51702100);四川省青年科技创新团队(2017TD001)
通讯作者:  *刘建涛,西南交通大学机械工程学院副研究员/硕士研究生导师。2011年12月获电子科技大学机械电子工程专业博士学位;2012年1月—2014年2月在西南交通大学摩擦学研究所从事博士后研究;2016年10月—2017年10月在法国EVRY大学访学。目前主要从事非均质材料本构建模和数值模拟、结构/材料损伤/裂纹萌生及演化机制、结构/材料健壮性优化设计、CAE仿真软件研发等研究。在国内外知名期刊(Computer Methods in Applied Mechanics and Engineering、International Journal of Engineering Science、Computational Mechanics等)发表论文40余篇。jiantaoliu1982@home.swjtu.edu.cn   
作者简介:  蔡兴瑞,2015年6月、2019年6月于西南交通大学获得工学学士学位和硕士学位。目前主要研究领域为计算力学及集成电路实验验证。
引用本文:    
蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
CAI Xingrui, WAN Yifei, LI Hanchao, SONG Jialing, FENG Zhiqiang, ZENG Qingfeng, GUAN Kang, LIU Jiantao. Digital Modeling of the Natural Microstructures and Evaluation of the Overall Anisotropic Moduli of Ceramic Matrix Composites Toughened by Continuous SiC Fiber Bundles. Materials Reports, 2023, 37(13): 21050041-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050041  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21050041
1 Zou H, Wang Y, Liu G, et al. Aeronautical Manufacturing Technology, 2017(15), 76(in Chinese).
邹豪, 王宇, 刘刚, 等. 航空制造技术, 2017(15), 76.
2 Liu Q M, Huang S Z, Hei A J. Journal of Materials Engineering, 2019(2), 1(in Chinese).
刘巧沐, 黄顺洲, 何爱杰. 材料工程, 2019(2), 1.
3 Mital S K, Murthy P L N, Chamis C C. Journal of Advanced Materials, 1996, 33(3), 10.
4 Bale H, Blacklock M, Begley M R, et al. Journal of the American Ceramic Society, 2012, 95(1), 11.
5 Pluvinage P, Parvizi-Majidi A, Chou T W. Journal of Materials Science, 1996, 31(1), 232.
6 Santhosh U, Gowayed Y, Ojard G, et al. Journal of Nondestructive Eva-luation, 2018, 37(2), 37.
7 Morales-Rodríguez A, Reynaud P, Fantozzi G, et al. Scripta Materialia, 2009, 60(6), 388.
8 Wang Y Q, Zhang L T, Cheng L F. Journal of Aeronautical Materials, 2008, 28(2), 95(in Chinese).
王毅强, 张立同, 成来飞. 航空材料学报, 2008, 28(2), 95.
9 Wang H B, Zhang W H, Yang J G, et al. Acta Materiae Compositae Sinica, 2008(3), 182(in Chinese).
汪海滨, 张卫红, 杨军刚, 等. 复合材料学报, 2008(3), 182.
10 Wang H B, Zhang W H, Xu Y J. Acta Materiae Compositae Sinica, 2010, 27(5), 93(in Chinese).
汪海滨, 张卫红, 许英杰. 复合材料学报, 2010, 27(5), 93.
11 Xu Y J, Zhang W H, Wang H B. Journal of Materials Science & Engineering, 2008, 26(4), 526(in Chinese).
许英杰, 张卫红, 汪海滨. 材料科学与工程学报, 2008, 26(4), 526.
12 Ismar H, Streicher F. Computational Materials Science, 1999, 16(1-4), 1.
13 Ismar H, Schröter F, Streicher F. Computational Materials Science, 2000, 19(1-4), 304.
14 Zhang S, Gao X, Chen J, et al. Materials & Design, 2016, 101, 66.
15 Dasgupta A, Agarwal R K. Journal of Composite Materials, 1992, 26(18), 2736.
16 Dasgupta A, Agarwal R K, Bhandarkar S M. Composites Science and Technology, 1996, 56(3), 209.
17 Tabiei A, Yi W. Composite Structures, 2002, 58(1), 149.
18 Ivanov I, Tabiei A. Composite Structures, 2001, 54(4), 489.
19 Aminjikarai S B, Tabiei A. Composite Structures, 2007, 81(3), 407.
20 Wang Y P, Li Y L, Suo T, et al. Ceramics International, 2018, 1(44), 20058.
21 Liu T, Deng Q, Yang D, et al. Sciences China: Technological Sciences, 2017, 60(9), 1.
22 Abdi F, Godines C, Morscher G N, et al. In:ASME Turbo Expo: Turbomachinery Technical Conference & Exposition. America,2016.
23 Liu J T, Gu S T, He Q C. International Journal for Multiscale Computational Engineering, 2015, 13(2), 123.
24 Velmurugan R, Srinivasulu G, Jayasankar S. Computational Materials Science, 2014(91), 339.
[1] 冯士杰, 宋环君, 陈昊然, 孙娅楠, 杨小健, 张宝鹏, 杨良伟, 刘伟. 反应熔渗工艺制备碳纤维增强陶瓷基复合材料研究进展[J]. 材料导报, 2022, 36(22): 22050068-6.
[2] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[3] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[4] 冯东, 姜岩, 茹红强, 罗旭东, 张国栋, 曹一伟. 纳米-Al2O3/SiO2加入量对MgO-Al2O3-SiO2复相陶瓷烧结机理的影响[J]. 材料导报, 2018, 32(24): 4248-4252.
[5] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[6] 卢国锋. Si-O-C界面对C/Si-C-N复合材料性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 121-124.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed