Digital Modeling of the Natural Microstructures and Evaluation of the Overall Anisotropic Moduli of Ceramic Matrix Composites Toughened by Continuous SiC Fiber Bundles
CAI Xingrui1, WAN Yifei1, LI Hanchao2, SONG Jialing1, FENG Zhiqiang1, ZENG Qingfeng3, GUAN Kang4, LIU Jiantao1,*
1 College of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China 2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China 3 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China 4 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Abstract: To properly overcome the difficulties in modeling the anisotropy of continuous toughening phases and in predicting the overall moduli of ceramic matrix composites, this work developed an automatic digital methodology for modeling the complex roughly periodic microstructures together with a convenient technique for assigning the anisotropic material properties of the relevant performs of ceramic matrix composites (CMCs) by combining the level set method and the finite element method. Meanwhile, the CMC toughened by the two-dimensional SiC woven fabric (SiCf/SiC) was taken as an illustration to establish the multiscale computational strategy of accurately evaluating the overall anisotropic moduli of SiCf/SiC taking account of the natural pore effects based on the micromechanics scheme and self-programming. The validity of the digital modeling methodology as well as the computational algorithm for predicting the overall modli of SiCf/SiC in this study was demonstrated by comparing the numerical predictions with the experimental data in the open literature. Furthermore, the influence of the natural pore shapes and the waviness ratio of the fiber bundles were investigated in detail.
通讯作者:
*刘建涛,西南交通大学机械工程学院副研究员/硕士研究生导师。2011年12月获电子科技大学机械电子工程专业博士学位;2012年1月—2014年2月在西南交通大学摩擦学研究所从事博士后研究;2016年10月—2017年10月在法国EVRY大学访学。目前主要从事非均质材料本构建模和数值模拟、结构/材料损伤/裂纹萌生及演化机制、结构/材料健壮性优化设计、CAE仿真软件研发等研究。在国内外知名期刊(Computer Methods in Applied Mechanics and Engineering、International Journal of Engineering Science、Computational Mechanics等)发表论文40余篇。jiantaoliu1982@home.swjtu.edu.cn
蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
CAI Xingrui, WAN Yifei, LI Hanchao, SONG Jialing, FENG Zhiqiang, ZENG Qingfeng, GUAN Kang, LIU Jiantao. Digital Modeling of the Natural Microstructures and Evaluation of the Overall Anisotropic Moduli of Ceramic Matrix Composites Toughened by Continuous SiC Fiber Bundles. Materials Reports, 2023, 37(13): 21050041-7.
1 Zou H, Wang Y, Liu G, et al. Aeronautical Manufacturing Technology, 2017(15), 76(in Chinese). 邹豪, 王宇, 刘刚, 等. 航空制造技术, 2017(15), 76. 2 Liu Q M, Huang S Z, Hei A J. Journal of Materials Engineering, 2019(2), 1(in Chinese). 刘巧沐, 黄顺洲, 何爱杰. 材料工程, 2019(2), 1. 3 Mital S K, Murthy P L N, Chamis C C. Journal of Advanced Materials, 1996, 33(3), 10. 4 Bale H, Blacklock M, Begley M R, et al. Journal of the American Ceramic Society, 2012, 95(1), 11. 5 Pluvinage P, Parvizi-Majidi A, Chou T W. Journal of Materials Science, 1996, 31(1), 232. 6 Santhosh U, Gowayed Y, Ojard G, et al. Journal of Nondestructive Eva-luation, 2018, 37(2), 37. 7 Morales-Rodríguez A, Reynaud P, Fantozzi G, et al. Scripta Materialia, 2009, 60(6), 388. 8 Wang Y Q, Zhang L T, Cheng L F. Journal of Aeronautical Materials, 2008, 28(2), 95(in Chinese). 王毅强, 张立同, 成来飞. 航空材料学报, 2008, 28(2), 95. 9 Wang H B, Zhang W H, Yang J G, et al. Acta Materiae Compositae Sinica, 2008(3), 182(in Chinese). 汪海滨, 张卫红, 杨军刚, 等. 复合材料学报, 2008(3), 182. 10 Wang H B, Zhang W H, Xu Y J. Acta Materiae Compositae Sinica, 2010, 27(5), 93(in Chinese). 汪海滨, 张卫红, 许英杰. 复合材料学报, 2010, 27(5), 93. 11 Xu Y J, Zhang W H, Wang H B. Journal of Materials Science & Engineering, 2008, 26(4), 526(in Chinese). 许英杰, 张卫红, 汪海滨. 材料科学与工程学报, 2008, 26(4), 526. 12 Ismar H, Streicher F. Computational Materials Science, 1999, 16(1-4), 1. 13 Ismar H, Schröter F, Streicher F. Computational Materials Science, 2000, 19(1-4), 304. 14 Zhang S, Gao X, Chen J, et al. Materials & Design, 2016, 101, 66. 15 Dasgupta A, Agarwal R K. Journal of Composite Materials, 1992, 26(18), 2736. 16 Dasgupta A, Agarwal R K, Bhandarkar S M. Composites Science and Technology, 1996, 56(3), 209. 17 Tabiei A, Yi W. Composite Structures, 2002, 58(1), 149. 18 Ivanov I, Tabiei A. Composite Structures, 2001, 54(4), 489. 19 Aminjikarai S B, Tabiei A. Composite Structures, 2007, 81(3), 407. 20 Wang Y P, Li Y L, Suo T, et al. Ceramics International, 2018, 1(44), 20058. 21 Liu T, Deng Q, Yang D, et al. Sciences China: Technological Sciences, 2017, 60(9), 1. 22 Abdi F, Godines C, Morscher G N, et al. In:ASME Turbo Expo: Turbomachinery Technical Conference & Exposition. America,2016. 23 Liu J T, Gu S T, He Q C. International Journal for Multiscale Computational Engineering, 2015, 13(2), 123. 24 Velmurugan R, Srinivasulu G, Jayasankar S. Computational Materials Science, 2014(91), 339.