Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030031-5    https://doi.org/10.11896/cldb.24030031
  无机非金属及其复合材料 |
催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响
陈洋1,2,*, 李增祎1, 吴智1, 邓承继2, 娄晓明1, 李勇庆1, 谭嘉琳1, 丁军2,*, 余超2
1 湖南工学院材料科学与工程学院,湖南 衡阳 421002
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Effects of Catalyst Content and Temperature on Microstructural Evolution of Low-carbon MgO-C Refractories Prepared by Catalytic Nitridation
CHEN Yang1,2,*, LI Zengyi1, WU Zhi1, DENG Chengji2, LOU Xiaoming1, LI Yongqing1, TAN Jialin1, DING Jun2,*, YU Chao2
1 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 16153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探明硝酸铁添加量和氮化温度对催化制备低碳MgO-C耐火材料中陶瓷相形貌演变的影响,以电熔镁砂、鳞片石墨、硅粉、酚醛树脂和硝酸铁为主要原料,通过高温氮化制备低碳MgO-C耐火材料。结果表明:与不添加催化剂的材料(1 400 ℃)相比,硝酸铁的添加促进了SiC、β-Si3N4和α-Si3N4新相的生成,晶须状Mg2SiO4消失,Mg2SiO4主要以尺寸更大的片状形貌存在;当硝酸铁添加量为1%时,生成许多大尺寸的片状Mg2SiO4和较多小晶粒尺寸的柱状β-Si3N4。在含3%硝酸铁的材料中,氮化温度由1 400 ℃升高至1 500 ℃会导致试样内部产生大量气体而逸出,降低了片状Mg2SiO4和柱状β-Si3N4的生成量,并使Mg2SiO4以尖端带液滴的蠕虫状形貌存在。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈洋
李增祎
吴智
邓承继
娄晓明
李勇庆
谭嘉琳
丁军
余超
关键词:  低碳MgO-C耐火材料  显微结构演变  陶瓷相  催化氮化    
Abstract: To investigate the effects of ferric nitrate content and nitridation temperature on the microstructural evolution of ceramic phase in the catalytic preparation of low-carbon MgO-C refractories, fused magnesia, flake graphite, silicon powder, phenolic resin and ferric nitrate were used as the main raw materials. Compared with the material without addition of catalyst (1 400 ℃), the addition of ferric nitrate promoted the formation of new phases of SiC, β-Si3N4 and α-Si3N4, the whisker-like Mg2SiO4 disappeared, and Mg2SiO4 mainly existed in the form of larger flakes; when the addition amount of ferric nitrate was 1%, many large-sized flaky Mg2SiO4 and more columnar β-Si3N4 with small grain size were formed. In the material containing 3% ferric nitrate, the increase of nitridation temperature from 1 400 ℃ to 1 500 ℃ led to the formation and escape of a large amount of gas inside the sample, which reduced the formation of flaky Mg2SiO4 and columnar β-Si3N4, and Mg2SiO4 also existed in worm-like morphology with droplet at the tip.
Key words:  low-carbon MgO-C refractory    microstructural evolution    ceramic phase    catalytic nitridation
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TQ175  
基金资助: 湖南省教育厅资助科研(22B0856;20B161);武汉科技大学省部共建耐火材料与冶金国家重点实验室开放基金(G202504);衡阳市指导性计划项目(202323016886);国家自然科学基金区域创新发展联合基金(U20A20239);湖南省应用特色学科材料科学与工程学科(湘教通〔2022〕351号);湖南省自然科学基金(2021JJ40165;2022JJ30221);湖南省大学生创新创业训练计划(S202411528102;S202411528062X)
通讯作者:  陈洋,湖南工学院材料科学与工程学院讲师。长期从事非氧化物陶瓷材料的制备和新型耐高温复合材料领域的研发工作。chenyang_9210@163.com;
丁军,武汉科技大学材料学部教授、硕士研究生导师。主要从事耐火材料设计制备、耐火原料高值高效利用及材料性能表征等方面的研究。dingjun@wust.edu.cn   
引用本文:    
陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
CHEN Yang, LI Zengyi, WU Zhi, DENG Chengji, LOU Xiaoming, LI Yongqing, TAN Jialin, DING Jun, YU Chao. Effects of Catalyst Content and Temperature on Microstructural Evolution of Low-carbon MgO-C Refractories Prepared by Catalytic Nitridation. Materials Reports, 2025, 39(8): 24030031-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030031  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030031
1 Chen Y, Deng C J, Lou X M, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(6), 2153 (in Chinese).
陈洋, 邓承继, 娄晓明, 等. 硅酸盐通报, 2022, 41(6), 2153.
2 Wang X, Chen Y, Cao G L, et al. Materials Reports, 2021, 35(12), 12053 (in Chinese).
王杏, 陈洋, 曹桂莲, 等. 材料导报, 2021, 35(12), 12053.
3 Wang H H, Xu Y J, Jiang K, et al. Materials Reports, 2017, 31(20), 96 (in Chinese).
王慧华, 徐英君, 蒋坤, 等. 材料导报, 2017, 31(20), 96.
4 Wang E H, Yang Y K, Hou X M. Chinese Journal of Engineering, 2022, 44(4), 654 (in Chinese).
王恩会, 杨亚锟, 侯新梅. 工程科学学报, 2022, 44(4), 654.
5 Li H X. Refractories, 2021, 55(5), 381 (in Chinese).
李红霞. 耐火材料, 2021, 55(5), 381.
6 Chen Y, Wang X, Deng C J, et al. Construction and Building Materials, 2021, 289, 123032.
7 Chen Y, Ding J, Yu C, et al. Journal of Physics and Chemistry of Solids, 2023, 177, 111304.
8 Chen Y, Wang X, Deng C J, et al. Journal of the European Ceramic Society, 2021, 41(1), 963.
9 Zhu T B, Li Y W, Sang S B. Journal of Alloys and Compounds, 2019, 783, 990.
10 Ren X M, Ma B Y, Liu H, et al. Journal of the European Ceramic Society, 2022, 42(9), 3986.
11 Chen Y, Deng C J, Wang X, et al. Construction and Building Materials, 2020, 240, 117964.
12 Yao G S, Li Y, Jiang P, et al. Solid State Sciences, 2017, 66, 50.
13 ChenY, Ding J, Deng C J, et al. Ceramics International, 2023, 49(16), 26871.
14 Peng N. Fundamentalresearch of nitrides-oxides-carbon composite prepared by high-temperature nitriding. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2015 (in Chinese).
彭耐. 高温氮化制备氮化物-氧化物-碳复合材料基础研究. 博士学位论文, 武汉科技大学, 2015.
15 Wang X, Chen Y, Ding J, et al. Ceramics International, 2021, 47(8), 10603.
16 Wang E H, Li B, Yuan Z F, et al. Journal of Alloys and Compounds, 2017, 725, 840.
17 Zhang S, Marriott N J, Lee W E. Journal of the European Ceramic Society, 2001, 21(8), 1037.
18 Wang X, Zhu B Q, Li X C, et al. Refractories, 2015, 49(6), 412 (in Chinese).
汪贤, 朱伯铨, 李享成, 等. 耐火材料, 2015, 49(6), 412. S
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 殷彦菲, 顾强, 李红霞, 刘国齐, 李欣哲. Al2O3夹杂物在浸入式水口内衬材料上的成核与反应性研究[J]. 材料导报, 2024, 38(24): 23080196-8.
[3] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[4] 顾强, 马渭奎, 钱凡, 刘国齐, 李红霞. 洁净金属冶炼用CaO材料的防水化措施及作用机理[J]. 材料导报, 2024, 38(14): 23050050-7.
[5] 左斌, 尹洪峰, 刘云, 辛亚楼, 刘宇驰, 袁蝴蝶. 水泥回转窑过渡带用尖晶石-方镁石-铝酸钙耐火材料的制备[J]. 材料导报, 2024, 38(12): 23010150-5.
[6] 钱凡, 李红霞, 郭海荣, 于建宾, 李坚强, 马渭奎, 马北越, 杨文刚. 耐火材料的抗碱侵蚀性研究进展[J]. 材料导报, 2024, 38(11): 22100110-12.
[7] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[8] 刘国齐, 李红霞, 杨文刚, 钱凡, 李勇. 镁铝尖晶石原位生成及其对耐火材料结构、性能的影响[J]. 材料导报, 2023, 37(20): 22040125-5.
[9] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[10] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[11] 丁亚文, 肖国庆, 丁冬海, 臧云飞, 陈建军. 晶体硅切割废料对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 材料导报, 2022, 36(6): 21010084-5.
[12] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[13] 贾小东, 田琳, 高伟, 陈树江, 李国华. 基于酸浸法去除水泥窑用后砖中氯化钾的研究[J]. 材料导报, 2021, 35(11): 11034-11038.
[14] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[15] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed