Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23050121-6    https://doi.org/10.11896/cldb.23050121
  无机非金属及其复合材料 |
镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响
王梦强1, 陈留刚1, 孙红刚2,*, 杜一昊2, 司瑶晨3, 李红霞1,2,3,*
1 郑州大学材料科学与工程学院,河南省高温功能材料重点实验室,郑州 450001
2 中钢集团洛阳耐火材料研究院有限公司先进耐火材料国家重点实验室,河南 洛阳 471039
3 北京科技大学材料科学与工程学院,北京 100083
Effect of Mg-Al Additive on Microstructure and Properties of SiC-MgAl2O4 Materials
WANG Mengqiang1, CHEN Liugang1, SUN Honggang2,*, DU Yihao2, SI Yaochen3, LI Hongxia1,2,3,*
1 Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039, Henan, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探索煤气化用耐火材料的无铬化,本研究采用碳化硅颗粒和镁铝尖晶石细粉为主要原料制备SiC-MgAl2O4复合耐火材料,于流动氮气中500~1 450 ℃热处理,对比未添加和添加4%(质量分数)镁铝合金粉的复合材料在热处理升温过程中的微观结构及性能变化,探究镁铝合金氮化烧成中形成的低维相对SiC-MgAl2O4复合材料性能的改善效果。结果表明,镁铝合金与热处理环境中的N2、O2的反应温度区间为650~800 ℃,主要反应产物为AlN和MgO。添加镁铝合金后的试样在700 ℃形成蜂窝状MgAl2O4尖晶石,增强了SiC骨料和MgAl2O4基质间的结合,此时试样的常温力学强度达到最高;900~1 300 ℃时,MgAl2O4尖晶石由蜂窝状转变为棒状,1 300~1 500 ℃时,其再转变为片状、粒状的MgAlON尖晶石,这些形貌和物相的转变伴随体积膨胀,导致试样的强度小幅下降。镁铝合金的添加能使SiC-MgAl2O4在较低温度热处理下原位形成尖晶石,从而提高材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王梦强
陈留刚
孙红刚
杜一昊
司瑶晨
李红霞
关键词:  复合耐火材料  镁铝尖晶石  氮化反应  镁铝合金    
Abstract: In order to explore the chromium-free refractories for coal gasification, SiC-MgAl2O4 materials were prepared using SiC particles and MgAl2O4 powder. Microstructure and properties of the composites with or without 4wt% Mg-Al alloy after heat-treating at temperature range of 500—1 450 ℃ under N2 gas flow were investigated. Explore the formation of low-dimensional phase in nitriding sintering of Mg-Al alloy to improve the performance of SiC-MgAl2O4 composite materials. The results show that the Mg-Al alloy reacted with N2 and O2 at 650—800 ℃, predominantly forming AlN and MgO. Honeycomb-like MgAl2O4 spinel was formed at 700 ℃ enhancing the bonding level between SiC aggregate and MgAl2O4 matrix and thus increasing the mechanical strength of the composites. The honeycomb-like MgAl2O4 spinel changed from honeycomb into rod shape at 900—1 300 ℃, and then into flake and granular MgAlON at 1 300—1 500 ℃. The changes in morphology and phase composition are accompanied by volume expansion, resulting in a slight decrease in the strength of the sample. The addition of Mg-Al alloy can improve the mechanical properties of SiC-MgAl2O4 by in-situ formation of spinel under low heat treatment.
Key words:  composite refractory    MgAl2O4 spinel    nitridation    Mg-Al alloy
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TQ175  
基金资助: 国家自然科学基金(U21A2059)
通讯作者:  *孙红刚,工学博士,正高级工程师,硕士研究生导师,在中钢集团洛阳耐火材料研究院从事技术研发工作。2003年和2005年在四川大学分别获无机非金属材料工程专业学士学位和材料学硕士学位,2023年在北京科技大学获材料科学与工程专业博士学位,主要研究方向为耐火材料与高温熔体的反应行为及其性能调控,主持和参与科研项目10余项,发表学术论文70余篇,获得授权发明专利42件。sunhonggang@hotmail.com
李红霞,工学博士,正高级工程师,博士研究生导师,中国宝武首席科学家、先进耐火材料国家重点实验室主任、中国金属学会常务理事、全国耐火材料标准化委员会主任委员、“新世纪百千万人才工程”国家级人选等。1987年和1990年在天津大学分别获技术陶瓷专业学士学位和无机非金属材料专业硕士学位,1994年中国科学院上海硅酸盐研究所无机非金属材料专业获博士学位,期间在美国密西根大学学习。长期围绕冶金产品高端化和绿色制造新技术开展先进耐火材料研究,主持国家级项目21项,获国家技术发明二等奖1项(排名第1)、省部科技进步一等奖5项(三项排名第1),制定国际标准2项,授权发明专利60件,发表论文321篇,出版专著6部,多次编制行业发展规划和技术路线图等。lihongx0622@126.com   
作者简介:  王梦强,2021年6月毕业于中原工学院,获工学学士学位。现为郑州大学材料科学与工程学院硕士研究生,主要从事耐火材料方向的课题研究。
引用本文:    
王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
WANG Mengqiang, CHEN Liugang, SUN Honggang, DU Yihao, SI Yaochen, LI Hongxia. Effect of Mg-Al Additive on Microstructure and Properties of SiC-MgAl2O4 Materials. Materials Reports, 2024, 38(16): 23050121-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050121  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23050121
1 He J Y. Pollution characteristics, bioavailability and risk assessment of hexavalent chromium in soil. Master’s Thesis, Zhejiang University, China, 2015 (in Chinese).
何俊昱. 土壤六价铬的污染特性、生物可给性及风险评估. 硕士学位论文, 浙江大学, 2015.
2 Liu K Y, Guo Q H, Gong Y. et al. Ceramics International, 2021, 47(21), 30648.
3 Wang L. Preparation of SiC-MgAl2O4 composite and its resistance to coal slag corrosion. Master’s Thesis, Sinosteel Luoyang Institute of Refractories Research, China, 2019 (in Chinese).
王岚. SiC-MgAl2O4复合材料的制备及抗煤渣侵蚀性能研究. 硕士学位论文, 中钢集团洛阳耐火材料研究院, 2019.
4 Sun H G, Si Y C, Xia M, et al. Materials Reports, 2022, 36(20), 181 (in Chinese).
孙红刚, 司瑶晨, 夏淼, 等. 材料导报, 2022, 36(20), 181.
5 Sun H G, Li H X, Chen L G, et al. Corrosion Science, 2022, 207, 110560.
6 Hong Y R, Sun J L. Non-oxide composite refractory, Metallurgical Industry Press, China, 2003, pp. 58 (in Chinese).
洪彦若, 孙加林. 非氧化物复合耐火材料, 冶金工业出版社, 2003, pp. 58.
7 Han J S, Li Y, Ma C H, et al. Journal of the European Ceramic Society, 2022, 42(14), 6356.
8 Ma C H, Li Y, Zhang L X, et al. Journal of Materials Science, 2019, 54(24), 14654.
9 Huang J W, Hussain M I, Lv X A, et al. Journal of Alloys and Compounds, 2022, 909, 164648.
10 Wu X F, Peng J, Li Y, et al. Solid State Sciences, 2020, 100, 106112.
11 Ma C H, Li Y, Zhang L X, et al. Journal of the American Ceramic Society, 2019, 102(10), 6349.
12 Xia M. Preparation and properties of metal composite SiC-MA green refractories for coal gasification. Master’s Thesis, Sinosteel Luoyang Refractory Research, China, 2021 (in Chinese).
夏淼. 煤气化用金属复合SiC-MA绿色材料的制备及性能研究. 硕士学位论文, 中钢集团洛阳耐火材料研究院, 2021.
13 Si Y C, Li H X, Sun H G, et al. Ceramics International, 2023, 49(7), 10566.
14 Si Y C, Li H X, Sun H G, et al. Materials Today Communications, 2022, 31, 103314.
15 Li J X, Zhao W J, Yan S, et al. Chinese Journal of Energetic Materials, 2021, 29(10), 888 (in Chinese).
李建新, 赵婉君, 闫石, 等. 含能材料, 2021, 29(10), 888.
16 Wu C C, Xiang J Z, Sun X L, et al. Armaments Engineering Journal, 2020, 41(S2), 162 (in Chinese).
吴成成, 向俊舟, 孙晓乐, 等. 兵工学报, 2020, 41(S2), 162.
17 Weiss J, Griel P, Gauckler L J. Journal of the American Ceramic Society, 1982, 65(5), 68.
18 Tong S H, Li Y, Jiao Z Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(12), 1746 (in Chinese).
仝尚好, 李勇, 焦智宇, 等. 硅酸盐学报, 2019, 47(12), 1746.
19 Granon A, Goeuriot P, Thevenot F, et al. Journal of the European Ceramic Society, 1994, 13(4), 365.
20 Mao H, Selleby M, Sundman B. Calphad, 2004, 28(3), 307.
21 Willems H X, De G, Metselaar R. Journal of the European Ceramic Society, 1993, 12(1), 43.
22 Dai W B, Lin W, Yamaguchi A, et al. Journal of the Ceramic Society of Japan, 2007, 115(1337), 42.
23 Lin X, Wang H, Tu B, et al. Journal of the American Ceramic Society, 2014, 97(1), 63.
24 Yang D Y, Zhang H Y, Zhong X C. Refractories, 2006(1), 12 (in Chinese).
杨道媛, 张海燕, 钟香崇. 耐火材料, 2006(1), 12.
25 Yan M W, Li Y, Li H Y, et al. Ceramics International, 2018, 44(4), 3856.
26 Gui S, Wang Z F, Wang X T, et al. Journal of Wuhan University of Science and Technology, 2019, 42(4), 272 (in Chinese).
桂舜, 王周福, 王玺堂, 等. 武汉科技大学学报, 2019, 42(4), 272.
[1] 刘国齐, 李红霞, 杨文刚, 钱凡, 李勇. 镁铝尖晶石原位生成及其对耐火材料结构、性能的影响[J]. 材料导报, 2023, 37(20): 22040125-5.
[2] 孙红刚, 司瑶晨, 夏淼, 李红霞, 赵世贤, 杜一昊, 尚心莲. 碳化硅-六铝酸钙复合材料的抗渣机制:煤气化用无铬耐火材料新探索[J]. 材料导报, 2022, 36(20): 21040081-6.
[3] 张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
[4] 庞宗旭, 朱荣, 陈培敦, 王俊海. 镁铝尖晶石固溶体成分对TiN析出行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 118-124.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed