Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1352-1356    https://doi.org/10.11896/j.issn.1005-023X.2018.08.027
  材料研究 |
碳热还原制备镁铝尖晶石晶须及其形成机理
张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲
中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471039
Preparation and Formation Mechanism of Magnesium Aluminate Spinel Whiskers by Carbothermal Reduction Method
ZHANG Yanxiang, LI Hongxia, YANG Wengang, LIU Guoqi, ZHANG Liping, TIAN Xiangyu, SHANG Xinlian
State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 1604KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为制备镁铝尖晶石晶须及探究其生成机理,采用电熔镁砂、活性α-Al2O3和石墨为主要原料,在埋碳气氛1 550 ℃烧制3 h合成纤维状镁铝尖晶石晶须,分别使用X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散光谱(EDS)对产物的物相、形貌和物微区化学成分进行观察分析。结果表明:晶须物相组成为镁铝尖晶石;镁铝尖晶石晶须顶端尖锐,部分晶须有分叉现象,长度可达10 mm,直径约为5~20 μm;当Al2O3与C共存时,镁铝尖晶石晶须生成量较多;镁铝尖晶石晶须的原位生长遵循气-固(V-S)机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张彦祥
李红霞
杨文刚
刘国齐
张利萍
田响宇
尚心莲
关键词:  镁铝尖晶石晶须  碳热还原  生长机制    
Abstract: Aiming at investigating the preparation and formation mechanism of magnesium aluminate spinel whisker, the present work utilized fused magnesia (≤0.074 mm), α-Al2O3(d50=2.5 μm) and flake graphite (≤0.15 mm) as main raw materials and applied a carbon-embedded heat-treatment process at 1 550 ℃ for 3 h to synthesize fibroid whisker-like MgAl2O4, whose phase composition and microstructure were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS), respectively. The results confirmed the spinel phase of the resultant whiskers with the length of up to 10 mm and an average diameter ranging from 5 μm to 20 μm. The spinel whiskers exhibit sharp terminals, and some of the whiskers have branches. The mutual presence of alumina and graphite can lead to a relatively large amount of spinel whiskers. It can also be concluded that the vapor-solid (V-S) mechanism dominates the in-situ growth of the magnesium aluminate spinel whiskers.
Key words:  magnesium aluminate spinel whisker    carbothermal reduction    growth mechanism
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ17  
基金资助: 国家自然科学基金(51372231;51772277);河南省科技创新人才计划(164100510023);河南省基础与前沿研究项目(162300410057)
通讯作者:  刘国齐:通信作者,男,1975年生,博士,教授级高级工程师,研究方向为含碳耐火材料和材料数值模拟 E-mail:liugq@lirrc.com   
作者简介:  张彦祥:男,1990年生,硕士研究生,研究方向为含碳耐火材料工艺及机理 E-mail:yanxiangzhang@126.com
引用本文:    
张彦祥, 李红霞, 杨文刚, 刘国齐, 张利萍, 田响宇, 尚心莲. 碳热还原制备镁铝尖晶石晶须及其形成机理[J]. 《材料导报》期刊社, 2018, 32(8): 1352-1356.
ZHANG Yanxiang, LI Hongxia, YANG Wengang, LIU Guoqi, ZHANG Liping, TIAN Xiangyu, SHANG Xinlian. Preparation and Formation Mechanism of Magnesium Aluminate Spinel Whiskers by Carbothermal Reduction Method. Materials Reports, 2018, 32(8): 1352-1356.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.027  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1352
1 Baudin C, Martinez R, Pena P. High-temperature mechanical beha-vior of stoichiometric magnesium spinel[J].Journal of the American Ceramic Society,1995,78:1857.
2 Tripathi H S, Ghosh A. Spinelisation and properties of Al2O3-MgAl2O4-C refractory: Effect of MgO and Al2O3 reactants[J].Ceramics International,2010,36(4):1189.
3 Lei Muyun, Huang Cunxin, Wen Fang. Development of transparent ceramic spinel[J].Journal of Synthetic Crystals,2007,36(2):319(in Chinese).
雷牧云,黄存新,闻芳.透明尖晶石陶瓷的研究进展[J].人工晶体学报,2007,36(2):319.
4 李楠,顾华志.耐火材料学[M].北京:冶金工业出版社,2002:185.
5 Mazzoni A D, Sainz M A, Caballero A, et al. Formation and sintering of spinels (MgAl2O4) in reducing atmospheres[J].Materials Chemistry and Physics,2003,78(1):30.
6 Xie Zhaohui, Ye Fangbao. In-situ formation of spinel fibers in MgO-C refractory matrixes[J].Journal of Wuhan University of Technology-Materials Science Edition,2009,24(6):896.
7 Zhu Boquan, Wei Guoping.et al. In-situ catalytic growth of MgAl2O4 spinel whiskers in MgO-C refractories[J].International Journal of Materials Research,2014,105(6):593.
8 Zhu Tianbin, Li Yawei, Sang Shaobai. et al. Formation of hollow MgO-rich spinel whiskers in low carbon MgO-C refractories with Al additives[J].Journal of the European Ceramic Society,2014,34(16):4425.
9 Hashimoto S, Yamaguchito A. Synthesis of MgAl2O4 whiskers by an oxidation-reduction reaction[J].Journal of the American Ceramic Society,2010,79(2):491.
10 杨南如.无机非金属材料测试方法[M].武汉:武汉理工大学出版社,1993:70.
11 Pei Chunqiu, Shi Gan. Influence of the composition on MA spinel properties[J].Journal of Wuhan University of Science and Technology,2012(3):207(in Chinese).
裴春秋,石干.材料组成对镁铝尖晶石化行为的影响[J].武汉科技大学学报,2012(3):207.
12 Qi Haitao, Zhang Li. Ultra-long AlN crystal grown by physical vapor transport method[J].Bulletin of the Chinese Ceramic Society,2014,33(4):816(in Chinese).
齐海涛,张丽.气相传输法生长超长AlN晶须[J].硅酸盐通报,2014,33(4):816.
13 陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社,2005:480.
14 梁英教,车荫昌.无机物热力学手册[M].沈阳:东北大学出版社,1993:442.
15 许越.化学反应动力学[M].北京:化学工业出版社,2004:114.
[1] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[2] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[3] 尹月, 马北越, 张博文, 李世明, 于景坤, 张战, 李光强. 添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 111-114.
[4] 王彬, 薛文斌, 陈琳, 魏克俭, 吴正龙. 低碳钢液相等离子体电解硼碳共渗层生长特性研究*[J]. 《材料导报》期刊社, 2017, 31(14): 67-71.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed