Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23050095-8    https://doi.org/10.11896/cldb.23050095
  高分子与聚合物基复合材料 |
热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化
陈栋梁1,†, 雷子萱2,†, 徐力2, 陈双1, 刘育红2,*, 强军锋1,*
1 西安科技大学材料科学与工程学院,西安 710054
2 西安交通大学化学工程与技术学院,西安 712000
Curing Characteristics and Process Optimization of Hot Melt Phenolic Resin/Glass Fiber Laminate
CHEN Dongliang1,†, LEI Zixuan2,†, XU Li2, CHEN Shuang1, LIU Yuhong2,*, QIANG Junfeng1,*
1 College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2 School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 712000, China
下载:  全 文 ( PDF ) ( 10975KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 酚醛树脂复合材料被广泛应用于航空航天等领域,但固化后存在大量残余应力,导致材料力学性能下降。为了减少残余应力,提高改性酚醛树脂/玻璃纤维(MPF/GF)层压板的综合性能,通过建立有限元模型,详细讨论传热-固化、流动-压实和应力-变形模型,调整复合材料的固化制度,制备得到力学性能优良的复合材料。采用n级动力学模型和自催化模型建立了MPF/GF预浸料的固化反应动力学方程,研究了MPF的比热、黏度、玻璃化转变温度(Tg)、热膨胀系数(CTE)和化学收缩系数(CCS)等物理参数与温度和固化程度(α)的关系。通过计算不同制度下MPF/GF复合材料的温度梯度和α,使用三维有限元软件得到一个优化的固化制度。与传统的固化制度相比,基于优化后的固化制度获得的MPF/GF复合材料的残余应力从 32.10 MPa 降低到 25.98 MPa,降低了19.07%;玻璃化转变温度从290.25 ℃升高到304.18 ℃;玻璃态储能模量从 3.89 GPa 增加到 4.21 GPa,提升了8.22%;橡胶态的储能模量从 32.36 MPa 增加到 51.57 MPa,提升了59.36%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈栋梁
雷子萱
徐力
陈双
刘育红
强军锋
关键词:  酚醛树脂  残余应力  有限元  固化制度  复合材料    
Abstract: Phenolic resin composite materials are widely used in aerospace and other fields, but there is a large amount of residual stress after curing, which leads to a decrease in the mechanical properties of the materials. In order to reduce residual stress and improve the comprehensive performance of modified phenolic resin/glass fiber (MPF/GF) laminates, a finite element model was established to discuss the heat transfer curing, flow compaction, and stress deformation models in detail, and the curing regime of the composite was adjusted to prepare the composite with excellent mechanical properties. The kinetic equations of the curing reaction of MPF/GF prepreg were established using n-level kinetic model and autocatalytic model, and the physical parameters such as specific heat, viscosity, glass transition temperature (Tg), coefficient of thermal expansion (CTE) and coefficient of chemical shrinkage (CCS) of MPF were investigated in relation to the temperature and degree of curing (α). By calculating the temperature gradient and α, obtain an optimized curing regime using 3D finite element software. Compared with the traditional curing regime, the residual stress of MPF/GF composite material obtained based on the optimized curing regime decreased from 32.10 MPa to 25.98 MPa, a decrease of 19.07%;The glass transition temperature increased from 290.25 ℃ to 304.18 ℃, the glass state energy storage modulus increased from 3.89 GPa to 4.21 GPa, an increase of 8.22%, and the rubber state energy storage modulus increased from 32.36 MPa to 51.57 MPa, an increase of 59.36%.
Key words:  phenolic resin    residual stress    finite element    curing regime    composite material
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB332  
通讯作者:  *雷子萱,西安近代化学研究所助理研究员,2016年西安交通大学化学工程与工艺专业本科毕业,2022年西安交通大学化学工程专业博士毕业后到西安近代化学研究所工作至今。目前从事火箭发动机热防护材料树脂配方、成型工艺的研究。发表论文10余篇。
刘育红,西安交通大学化工学院教授、博士研究生导师。2001年南京理工大学高分子材料科学与工程专业本科毕业,2004年西安交通大学化学工程专业硕士研究生毕业,2008年西安交通大学化学工程专业博士研究生毕业后到西安交通大学大学工作至今。目前主要从事多组分聚合物的微观结构调控,航天热防护复合材料基体树脂,成型工艺及关键技术的研究工作。发表论文40余篇,获得中国授权发明专利10项。liuyuh@xjtu.edu.cn
强军锋,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2000年西安交通大学专业本科毕业,2004年西安交通大学化学工程专业硕士毕业后到西安科技大学工作至今,2011年西安交通大学电子科学与技术专业博士毕业。目前主要从事导电高分子材料合成及应用、生物工程材料的制备及应用研究工作。发表论文20余篇。qjfcamel@163.com   
作者简介:  陈栋梁,2021年6月于南京邮电大学获得理学学士学位。现为西安科技大学材料科学与工程学院硕士研究生,在刘育红教授和强军锋副教授指导下进行研究。目前研究领域为酚醛树脂复合材料的层间增韧与数值分析。
共同第一作者
引用本文:    
陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
CHEN Dongliang, LEI Zixuan, XU Li, CHEN Shuang, LIU Yuhong, QIANG Junfeng. Curing Characteristics and Process Optimization of Hot Melt Phenolic Resin/Glass Fiber Laminate. Materials Reports, 2024, 38(16): 23050095-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050095  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23050095
1 Asaro L, Rivero G, Manfredi L B, et al. Journal of Composite Materials, 2016, 50(10), 1287.
2 Kang S G, Hong J H, Kim C K. Industrial & Engineering Chemistry Research, 2010, 49 (23), 11954.
3 Behzad T, Sain M. Composites Science and Technology, 2007, 67, 1666.
4 DongH X, Li Y H, Zhang J, et al. RSC Advances, 2016, 6, 65533.
5 Abou Msallem Y, Jacquemin F, Boyard N, et al. Composites Part A: Applied Science and Manufacturing, 2010, 41, 108.
6 Miyagawa H, Mohanty A K, Misra M, et al. Macromolecular Materials and Engineering, 2004, 289, 636.
7 Wucher B, Lani F, Pardoen T, et al. Composites Part A: Applied Science and Manufacturing, 2014, 56, 27.
8 Kappel E. Composite Structures, 2015, 128, 155.
9 Sorrentino Land Bellini C. Journal of Composite Materials, 2015, 49, 2149.
10 Loos A C, Springer G S. Journal of Composite Materials, 1983, 17, 135.
11 Ding A X, Li S X, Wang J H et al. Composite Structures, 2015, 129, 60.
12 Stango R J, Wang S S. Journal of Manufacturing Science and Engineering, 1984, 106(1), 48.
13 Bogetti T A, Gillespie J W. Journal of Composite Materials, 1992, 26, 626.
14 Johnston A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures. Ph.D. Thesis, University of British Columbia, 1997.
15 Schapery R A. Journal of Composite Materials, 1967, 1, 228.
16 Zocher M A, Groves S E, Allen D H. International Journal for Numerical Methods in Engineering, 1997, 40, 2267.
17 Yeong K K, Scott R W. Polymer Engineering and Science, 1996, 36, 2852.
18 Hojjati M, Johnston A, Hoa S V et al. Journal of Applied Polymer Science, 2004, 91, 2548.
19 Gopal A K, Adali S, Verijenko V E. Composite Structures, 2000, 48, 99.
20 Ruiz E, Trochu F. Composites Part A: Applied Science and Manufacturing, 2006, 37, 913.
21 Kim J W, Lee J H, Kim H G, et al. Composite Structures, 2006, 75, 261.
22 Yan X Q. Polymer Composites, 2005, 26, 813.
23 Yan X Q. Acta Mechanica Sinica, 2006, 22, 62.
24 Zobeiry N, Vaziri R, Poursartip A. Composites Part A: Applied Science and Manufacturing, 2010, 41, 247.
25 Svanberg J M, Holmberg J A. Composites Part A: Applied Science and Manufacturing, 2004, 35, 711.
26 O’Brien D J, Mather P T, White S R. Journal of Composite Materials, 2001, 35, 883.
27 Machado M, Cakmak U D, Kallai I, et al. Composite Structures, 2016, 157, 256.
28 Belmonte A, Däbritz F, Ramis X, et al. Journal of Polymer Science, 2014, 52, 1227.
29 CaiH Y, Li P, Sui G, et al. Thermochimica Acta, 2008, 473, 101.
30 Bailleul J L, Delaunay D, Jarny Y. Journal of Reinforced Plastics And Composites, 1996, 15, 479.
31 Gutowski T G P X. Advanced composites manufacturing, John Wiley & Sons, 1997.
32 Dibenedetto A T. Journal of Polymer Science, 1987, 25, 1949.
33 Couchman P R. Macromolecules, 1987, 20, 1712.
34 Kravchenko O G S, Kravchenko G, Pipes R B. Composites Part A: Applied Science and Manufacturing, 2016, 80, 72.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[8] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[9] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[12] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[13] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[14] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed