Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22080105-5    https://doi.org/10.11896/cldb.22080105
  无机非金属及其复合材料 |
基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究
彭鹏1,*, 邵宇鹰1, 胡海敏1, 李振明2, 刘伟2
1 国网上海市电力公司,上海 200438
2 中国电力科学研究院有限公司储能与电工新技术研究所,北京 100192
Structure Design and Performance Analysis of Self-powered Temperature Sensor Based on Bismuth Telluride Flexible Thermoelectric Device
PENG Peng1,*, SHAO Yuying1, HU Haimin1, LI Zhenming2, LIU Wei2
1 State Grid Shanghai Municipal Electric Power Company, Shanghai 200438, China
2 Energy Storage and Electrotechnics Department, China Electric Power Research Institute Limited Company, Beijing 100192, China
下载:  全 文 ( PDF ) ( 9338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以开关柜触头这一易发热设备为研究对象,选取碲化铋基柔性热电器件构建自取能温度传感器。将柔性热电技术与无线传感技术相结合,开发适应电力设备运行特性的自取能可塑型温度传感材料器件,同时实现就地自取能和电网设备运行状态温度参数在线感知。利用COMSOL有限元软件系统研究了环境(温度和对流换热系数)、器件拓扑结构(高度和填充率)、界面接触电阻/热阻等因素对碲化铋基柔性热电器件输出性能的影响。模拟结果表明,在热端温度为308.15 K、环境温度为288.15 K、对流换热系数为5 W/(m2·K)的边界条件下,热电臂高度2 mm和填充率15%的热电器件能够达到最大输出电压95 mV、最大输出功率0.83 mW,满足无线通信模块传输电压信号的用电需求。通过本研究工作发现,降低环境温度,增加对流换热系数,优化热电臂高度或填充率,或降低界面接触电阻/热阻有利于提高热电器件的开路电压和输出功率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭鹏
邵宇鹰
胡海敏
李振明
刘伟
关键词:  碲化铋基柔性热电器件  自取能  温度传感器  有限元计算模拟    
Abstract: In this work, the switchgear contact, which is easy to heat, was taken as the subject, and the bismuth telluride based flexible thermoelectric device was selected to construct the self-powered temperature sensor. The flexible thermoelectric technology and wireless sensing technology were combined to develop a self-extracting and plastic temperature sensing device, which can fully adapt to the operating characteristics of power equipment and realize online sensing of temperature parameters of power grid equipment operating state. The effects of environment (temperature and convective heat transfer coefficient), device topology (height and filling rate), interface contact resistance/thermal resistance on the output performance of flexible thermoelectric devices were systematically studied through finite element simulations in COMSOL software. The results show that, under the boundary conditions of hot end temperature of 308.15 K, ambient temperature of 288.15 K and convective heat transfer coefficient of 5 W/(m2·K), the maximum output voltage and power of thermoelectric device with thermoelectric arm height 2 mm and filling rate 15% can reach 95 mV and 0.83 mW, respectively. It meets the power demand of transmission voltage signal of wireless communication module well. Reducing ambient temperature, increasing convective heat transfer coefficient, optimizing thermoelectric arm height or filling rate, or reducing interface contact resistance/thermal resistance can improve the open-circuit voltage and output power of thermoelectric devices.
Key words:  bismuth telluride based flexible thermoelectric device    self power    temperature sensor    finite element simulation
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG132.24  
基金资助: 国家电网公司科技项目(5500-202055253A-0-0-00)
通讯作者:  *彭鹏,国网上海市电力公司高级工程师。2015年中国科学院上海硅酸盐研究所材料物理与化学专业博士毕业,同年进入国网上海市电力公司博士后科研工作站,2017年出站。目前主要从事能源材料、储能材料以及应用等方面的研究工作。发表论文20余篇,包括Nature Energy、Journal of Power Sources、Solid State Ionics等。   
引用本文:    
彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
PENG Peng, SHAO Yuying, HU Haimin, LI Zhenming, LIU Wei. Structure Design and Performance Analysis of Self-powered Temperature Sensor Based on Bismuth Telluride Flexible Thermoelectric Device. Materials Reports, 2024, 38(6): 22080105-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080105  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22080105
1 Li X J, Ren Z A. Hunan Electric Power, 2017, 37(6), 35(in Chinese).
李晓江, 任章鳌. 湖南电力, 2017, 37(6), 35.
2 Guo D C. Research on online monitoring and temperature prediction technology of overheat fault in ring main unit. Master's Thesis, University of Mining and Technology, China, 2021 (in Chinese).
郭道程. 环网柜过热故障在线监测与温度预测技术研究. 硕士学位论文, 中国矿业大学, 2021.
3 Zhang W. Telecom Power Technology, 2020, 37(5), 224 (in Chinese).
张伟. 通信电源技术, 2020, 37(5), 224.
4 Lyu D F, Wang S, Zhang Y, et al. Shandong Electric Power, 2022, 49(7), 58 (in Chinese).
吕东飞, 王帅, 张永, 等. 山东电力技术, 2022, 49(7), 58.
5 Gao X. Environmental monitoring transmission node wireless transmission low-power design. Master's Thesis, North University of China, China, 2022 (in Chinese).
高欣. 环境监测传感节点无线传输低功耗设计. 硕士学位论文, 中北大学, 2022.
6 Li F. Design and implementation of wireless sensor networking powered by energy harvesting. Master's Thesis, Shanghai Jiao Tong University, China, 2016 (in Chinese).
李芬. 自取能无线测温传感器网络组网技术的研究与实现. 硕士学位论文, 上海交通大学, 2016.
7 Zhao S, Liu R P, Wang X Y, et al. Instrument Technique and Sensor, 2016(10), 119 (in Chinese).
赵帅, 刘瑞萍, 王新彦, 等. 仪表技术与传感器, 2016(10), 119.
8 Wang J Y, Pu T J, Tong J, et al. Electric Power Information and Communication Technology, 2020, 18(4), 1 (in Chinese).
王继业, 蒲天骄, 仝杰, 等. 电力信息与通信技术, 2020, 18(4), 1.
9 Xiao Y, Liang G Y, Lei B W. Materials Reports, 2023, 37(4), 22020174 (in Chinese).
肖颖, 梁耕源, 雷博文. 材料导报, 2023, 37(4), 22020174.
10 Guo T, Li S, Yao Y X, et al. Materials Reports, 2022, 36(4), 135 (in Chinese).
郭涛, 李硕, 姚雅萱, 等. 材料导报, 2022, 36(4), 135.
11 Yuan W, Lei Y, Xiao L S, et al. Advanced Materials, 2019, 31, 1807916.
12 Yang S Q, Qiu P F, Chen L D, et al. Small Science, 2021, 1, 2100005.
13 Wang Y C, Shi Y G, Mei D Q, et al. Applied Energy, 2018, 215, 690.
14 Kishore R A, Nozariasbmarz A, Poudel B, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 10389.
15 Padmanabhan R V, Sargolzaeiaval Y, Neumann T, et al. Npj Flexible Electronics, 2021, 5, 1.
16 Suarez F, Nozariasbmarz A, Vashaee D, et al. Energy & Environmental Science, 2016, 9(6), 2099.
17 Yu Y D, Guo Z P, Zhu W, et al. Nano Energy, 2022, 93, 106818.
18 Grujicic M, Zhao C L, Dusel E C. Applied Surface Science, 2005, 246(1-3), 290.
19 Hu P C, Shi C Q, Wang Y L, et al. Advanced Energy Materials, 2021, 11(25), 2100920.
[1] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[2] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed