Abstract: As an emerging two-dimensional nanostructured material, graphyne has broad application prospects in the field of thermoelectricity. In order to further improve its thermoelectric properties, using first-principle calculation methods, this study thoroughly investigates the influence laws of the modulation methods of B and N doping on the thermoelectric transport properties of α-graphyne. The results reveal that after B and N doping, the thermal conductivity of α-graphyne further decreases, and the decrease continues with increasing temperature. Regarding its electrical transport properties, α-graphyne exhibits a transition from semiconducting to metallic and then back to semiconducting behavior with increasing doping concentration. At the optimal carrier concentration, the maximum power factor increases from 0.011 W/(m·K2) to 0.019 W/(m·K2), and the maximum thermoelectric figure of merit increases from 0.566 to 2.414, resulting in a significant improvement in thermoelectric conversion efficiency. These findings indicate that B and N doping can effectively regulate the thermoelectric transport properties of α-graphyne. The results of this study provide valuable theoretical reference for understanding and controlling the thermoelectric properties of graphyne and facilitate its practical application in the field of thermoelectricity.
蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
JIANG Xuhao, LIU Yuanchao, LI Zhuan, XU Yifan, LI Zishuo, LIU Xinhao. The Influence of B & N Doping on the Thermoelectric Transport Properties of α-Graphyne. Materials Reports, 2025, 39(10): 24050034-7.
1 Jesse M, Mark L. Applied Physics Letters, 2013, 102, 093103. 2 Yu Z H, Zhang L F, Wu J, et al. Acta Physica Sinica, 2023, 72(5), 135. 余泽浩, 张力发, 吴靖, 等. 物理学报, 2023, 72(5), 135. 3 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46, 3256. 4 Liu Z H, Gao W H, Guo F K, et al. Materials Lab, 2022, 1, 220003. 5 Kang B T, Lee J Y. Carbon, 2015, 84, 246. 6 Antonio R P, Pablo G. Carbon, 2017, 114, 301. 7 Nihan K P, Cem S. Nanotechnology, 2014, 25, 185701. 8 Mu Y W, Li S D. Journal of Materials Chemistry C, 2016, 4, 7339. 9 Chang C K, Satender K, Kuo C C, et al. ACS Nano, 2013, 7, 1333. 10 Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Advanced Materials, 2009, 21, 4726. 11 Yun J N, Zhang Y N, Xu M Z, et al. Journal of Materials Science, 2017, 52, 10294. 12 Barnali B, Utpal S. The Journal of Physical Chemistry C, 2016, 120(47), 26793. 13 Fouad N A, Ali B A. The European Physical Journal B, 2023, 96, 127. 14 Zhang L H, Wang N, Zhang S L, et al. RSC Advances, 2014, 4, 54879. 15 Yuki A, Yuki I, Kuniharu T, et al. 2D Materials, 2017, 4, 025019. 16 Huang W, Wang J S, Liang G C. Physical Review B, 2011, 84, 045410. 17 He X, Cao X H, Ding Z K, et al. Journal of Applied Physics, 2024, 135, 204502. 18 Cao L M, Li X B, Zuo M, et al. Journal of Magnetism and Magnetic Materials, 2019, 485, 136. 19 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 20 Blöchl P E, Jepsen O, Andersen O K. Physical Review B, 1994, 49(23), 16223. 21 Baroni S, De G S, Dal C A, et al. Reviews of Modern Physics, 2001, 73(2), 515. 22 Li W, Carrete J, Katcho N A, et al. Computer Physics Communications, 2014, 185(6), 1747. 23 Maznev A A, Wright O B. American Journal of Physics, 2014, 82(11), 1062. 24 Goldsmid H J, Sharp J W. Journal of Electronic Materials, 1999, 28, 869. 25 Roya M, Alireza K. Structural Chemistry, 2014, 25, 853. 26 Patrick K S, Simon R P, Pawel K. Physical Review B, 2002, 65, 1. 27 Cheng L, Liu H J, Zhang J, et al. Physical Review B, 2014, 90(8), 085118.
JU Dianchun, WU Zhaoyong, ZHANG Rongliang, WANG Haifeng, WANG Feng, YAN Dingliu. Study on Microwave Heating Mg/TiO2 Mixture[J]. Materials Reports, 2020, 34(Z1): 140
-143
.