Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23100185-6    https://doi.org/10.11896/cldb.23100185
  无机非金属及其复合材料 |
Nb掺杂二氧化钛纳米管电子结构第一性原理计算
陈阿青*, 梁轻
杭州电子科技大学材料与环境工程学院先进光电材料与器件中心,杭州 310000
First Principles Calculation of Electronic Structure of Nb-doped Titanium Dioxide Nanotubes
CHEN Aqing*, LIANG Qing
Center of Advanced Optoelectronic Materials and Devices, College of Materials and Environmental Engineering, HangzhouDianzi University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 12061KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiO2纳米管的结构高度定向且紧密堆积,具有比表面积大、吸附能力强等优点,被广泛应用于光电催化等领域。为了进一步改性TiO2纳米管,本工作通过第一性原理方法计算不同手性的Nb掺杂TiO2纳米管的能带结构、态密度以及电荷密度等电子结构。结果表明不同手性的TiO2纳米管的能带结构不同,Nb掺杂提高了TiO2纳米管的费米能级,降低了禁带宽度。分析态密度可知纯TiO2纳米管的价带主要由O 2p轨道提供,导带主要由Ti 4d轨道提供,而Nb掺杂后Nb 4d轨道会对导带产生贡献。通过分析电荷密度可以进一步得出,与Ti原子相比,Nb原子与O原子之间的相互作用力更强,有利于增强TiO2纳米管的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈阿青
梁轻
关键词:  TiO2纳米管  Nb掺杂  电子结构  第一性原理  密度泛函理论    
Abstract: TiO2 nanotubes are highly oriented and tightly packed,with large specific surface area and strong adsorption capacity,and have been widely used in photoelectric catalysis and other fields.In order to further modify TiO2 nanotubes,in this work,Nb-doped TiO2 nanotubes with different chirality were studied,and their band structures,state densities,and charge densities were calculated by the first-principles method based on DFT.It was revealed that the band structures of TiO2 nanotubes are different with chirality and that Nb doping elevates the Fermi level of TiO2 nanotubes,reducing the band gaps.The calculation results of state density showed that valence bands of intrinsic TiO2 nanotubes are mainly provided by O 2p orbits,and the conduction bands are mainly provided by Ti 4d orbits.After Nb doping,the 4d orbits of Nb will contribute to the conduction bands.According to the charge density cross-section diagram,it could be concluded that the interaction force between the Nb and O atoms are enhanced (compared with that between Ti and O),leading to the improvement in stability of TiO2 nanotubes.
Key words:  TiO2 nanotube    Nb-doping    electronic structure    first principles    density functional theory
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TB34  
基金资助: 浙江省基础公益研究计划项目(LGG22E020004)
通讯作者:  *陈阿青,杭州电子科技大学材料与环境工程学院副教授。2015年北京航空航天大学博士毕业,2015年加入杭州电子科技大学材料与环境工程学院工作至今。目前从事光电薄膜功能材料与器件,纳米功能材料和光、电催化材料的制备与应用研究。aqchen@hdu.edu.cn   
引用本文:    
陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
CHEN Aqing, LIANG Qing. First Principles Calculation of Electronic Structure of Nb-doped Titanium Dioxide Nanotubes. Materials Reports, 2025, 39(4): 23100185-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100185  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23100185
1 Gu Y H. First principles study on the effect of the optical properties of TiO2 after double doping and gas molecule adsorption, Ph. D. thesis, Chongqing University, China, 2016 (in Chinese).
辜永红. 双掺杂及气体分子吸附对TiO2光学特性影响的第一性原理研究. 博士学位论文, 重庆大学, 2016.
2 Zhang Y, Li F, Zhang M. Journal of Jiaxing University, 2016, 28(6), 33.
张勇, 李凤, 张敏. 嘉兴学院学报, 2016, 28(6), 33.
3 Chen SS. Preparation and applications of titania nanotube array. Master’s Thesis, Shanghai Jiao Tong University, China, 2010 (in Chinese).
陈姗姗. 二氧化钛纳米管阵列的制备及应用研究. 硕士学位论文, 上海交通大学, 2010.
4 Zhang H Y. First principles study of anatase-phase TiO2 nanotubes. Master’s Thesis, Ocean University of China, China, 2013 (in Chinese).
张海洋. 锐钛矿型二氧化钛纳米管的第一性原理研究. 硕士学位论文, 中国海洋大学, 2013.
5 Xie Z, Chen W D. Acta Physica Sinica, 2014, 63(24), 75.
谢知, 程文旦. 物理学报, 2014, 63(24), 75.
6 Zhao C Q, Jin T, Tian J Z, et al. New Chemical Materials, 2021, 49(4), 242.
赵春琦, 荆涛, 田景芝, 等. 化工新型材料, 2021, 49(4), 242.
7 Liu W K, Luo J, Liu S. New Chemical Materials, 2023, 51(6), 45.
刘文凯, 罗洁, 刘慎. 化工新型材料, 2023, 51(6), 45.
8 Li H Y, Chen Y H, Zheng X L et al. Metallic Functional Materials, 2022, 29(5), 1.
李洪义, 陈言慧, 郑雄领, 等. 金属功能材料, 2022, 29(5), 1.
9 Cao DD. The design and photocatalytic performance of heterojunction micro-nano structure based on TiO2 nanotube arrays. Master’s Thesis, Ludong University, China, 2022 (in Chinese).
曹丹丹. TiO2纳米管阵列基异质结微纳结构的设计及光催化性能研究. 硕士学位论文, 鲁东大学, 2022.
10 Pan X. Study on the Adsorption and catalytic properties of TiO2 nanotube arrays. Master’s Thesis, Zhejiang University of Technology, China, 2013 (in Chinese).
潘西. 二氧化钛纳米管阵列吸附及催化性能研究. 硕士学位论文, 浙江工业大学, 2013.
11 Lu J Q. Liaoning Chemical Industry, 2021, 50(9), 1337.
卢建桥. 辽宁化工, 2021, 50(9), 1337.
12 Zhang X L, Wang J X, Xu S Q. Shang Dong Chemical Industry. 2022, 51(7), 33.
张小雷, 王江雪, 许士奇, 等. 山东化工, 2022, 51(7), 33.
13 Zhang H Z, Qin X Q, Wang M H. Environmental Protection of Chemical Industry. 2015, 35(3), 267.
张宏忠, 秦小青, 王明花. 化工环保, 2015, 35(3), 267.
14 Liu H Y. Preparation, modification, andphotocatalytic performance of titanium dioxides nanotubes. Master’s Thesis, Yanbian University, China, 2022 (in Chinese).
刘颢琰. 二氧化钛纳米管的制备、改性及其光催化性能研究. 硕士学位论文, 延边大学, 2022.
15 Ye SS. Visible-light photoelectrocatalytic removal of mixed waterpollutants based on titanium dioxide nanotubes composite film. Master’s Thesis, Huazhong University of Science and Technology, China, 2021 (in Chinese).
叶上诗. 基于二氧化钛纳米管复合膜可见光电催化去除混合污染物研究. 硕士学位论文, 华中科技大学, 2021.
16 Yu G D. Liaoning Chemical Industry, 2022, 51(5), 676.
于广铎. 辽宁化工, 2022, 51(5), 676.
17 Liu X, Liu Z Q, Zheng J, Yan X, et al. Journal of Alloys and Compounds, 2011, 509, 9970.
18 Su Y, Chen S, Quan X, Zhao H, et al. Applied Surface Science, 2008, 255, 2167.
19 Park J H, S Kim, Bard A J. Nano Letters, 2006, 6, 24.
20 Yang X, Min Y, Li S B, et al. Catalysis Science & Technology, 2018, 8, 1357.
21 Manole A V, Dobromir M, Gîrtan M, et al. Ceramics International, 2013, 39, 4771.
22 Ardeshir B, Omid A, Mohsen S. Journal of Nanostructures, 2020, 10, 119.
23 Momma K, Izumi F, Journal of Applied Crystallography, 2011, 44, 1272.
24 Giannozzi P, Baroni S, Bonini N, et al. Journal of Physics: Condensed Matter, 2009, 21, 395502.
25 M QQ. First-principles study of electonic properties of several metal oxides. Ph. D. thesis, University of Science and Technology of China, China, 2014 (in Chinese).
孟强强. 若干金属氧化物电子结构的第一性原理研究. 博士学位论文, 中国科学技术大学, 2014.
26 Li G, Chen M Q, Zhao S X, Acta Physico-Chimica Sinica, 2016, 32(12), 2905.
李刚, 陈敏强, 赵世雄, 等. 物理化学学报, 2016, 32(12), 2905.
27 Shen Y, Hu J Q, Pu Z H. et al. Precious Metals, 2021, 42(1), 65.
沈月, 胡洁琼, 普志辉, 等. 贵金属, 2021, 42(1), 65.
28 Chen J. Research onddlight conversion mechanism and afterglow characteristics of CsI:Tl. Master’s Thesis, University of Electronic Science and Technology of China, 2015 (in Chinese).
陈静. CsI:Tl光转换机理及余辉特性的研究. 硕士学位论文, 电子科技大学, 2015.
29 Wen D L, Xiong M Y, Zhang M, et al. Journal of Atomic and Molecular Physics, 2022, 39(4), 131.
文杜林, 熊明姚, 张苗, 等. 原子与分子物理学报, 2022, 39(4), 131.
[1] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[2] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[5] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[6] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[7] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[8] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[9] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[10] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[11] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[12] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[13] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[14] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[15] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed