Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 22120037-6    https://doi.org/10.11896/cldb.22120037
  金属与金属基复合材料 |
高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究
王勇1,2, 孙天昊1,2, 李永存1,2, 孙丽丽1,2,*, 贾鑫3, 张旭昀1,2
1 东北石油大学机械科学与工程学院,黑龙江 大庆 163318
2 黑龙江省石油石化多相介质处理及污染防治重点实验室,黑龙江 大庆 163318
3 中国石油天然气集团有限公司工程和物资管理部,北京 100007
First Principle Study of the Microstructure and Mechanical Properties of NbMoTaWV Refractory High-entropy Alloy Under High Pressure
WANG Yong1,2, SUN Tianhao1,2, LI Yongcun1,2, SUN Lili1,2,*, JIA Xin3, ZHANG Xuyun1,2
1 School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
3 Engineering, Procurement & Equipment Department, China National Petroleum Corporation, Beijing 100007, China
下载:  全 文 ( PDF ) ( 5767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NbMoTaWV难熔高熵合金具有优异的耐高温性能,但超高压力对合金结构和力学性能的影响还不得而知。本工作采用基于密度泛函理论的第一性原理计算方法,在0~200 GPa的压力范围内研究了NbMoTaWV难熔高熵合金的电子结构特征,分析了压力对合金形成焓、熔点等热力学性质,以及密度、韧性、硬度、屈服强度和弹性各向同性等力学性质的影响规律,阐明了高压下高熵合金稳定性增强的微观机理。结果表明:在0~200 GPa的压力范围内合金均表现为金属性。随着压力的增大,合金中电子离域性增强,原子间相互作用力增大,相邻原子的成键能力和成键强度提高,合金稳定性增强。0~100 GPa是该合金实验研究理想的压力区间,其中,50~75 GPa压力范围内合金明显呈弹性各向同性,工况下微裂纹产生倾向低。75~100 GPa压力范围内合金硬度和屈服强度高,75 GPa下分别达到11.58 GPa和3.86 GPa,此压力区间内合金具有较出色的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王勇
孙天昊
李永存
孙丽丽
贾鑫
张旭昀
关键词:  NbMoTaWV  第一性原理计算  高熵合金  高压  电子结构  热力学性质  力学性质    
Abstract: NbMoTaWV refractory high-entropy alloy has excellent high temperature resistance. However, the effect of ultra-high pressure on the structure and mechanical properties of the alloy is still unknown. In this work, the electronic structure characteristics of NbMoTaWV refractory high-entropy alloy were studied in the pressure range of 0—200 GPa by using a first principle calculation method based on density functional theory. Analyzed the influence of pressure on the thermodynamic properties of alloy such as formation enthalpy and melting point, as well as the mechanical properties of density, toughness, hardness, yield strength and elastic isotropy. In addition, the microscopic mechanism of stability enhancement of high-entropy alloy under high pressure was clarified. The results show that the alloys are metallic in the pressure range of 0—200 GPa. With the increase of pressure, the electron delocalization in the alloy is enhanced, the interaction force between atoms increases, the bonding ability and strength of adjacent atoms increase, which results the stability of alloy is improved. The ideal pressure range of experimental research on this alloy is under 0—100 GPa. Among which, the alloy in the pressure range of 50—75 GPa is obviously elastically isotropic, and the tendency of microcrack generation is low under working conditions;the hardness and yield strength of alloy are high in the pressure range of 75—100 GPa;under 75 GPa, the two performances reached 11.58 GPa and 3.86 GPa respectively;alloy has excellent comprehensive mechanical properties in the pressure range of 75—100 GPa.
Key words:  NbMoTaWV    first principle calculations    high-entropy alloy    high-pressure    electronic structure    thermodynamic property    mecha-nical property
发布日期:  2024-10-12
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51974091)
通讯作者:  *孙丽丽,通信作者,东北石油大学博士、副教授。目前主要从事多相流数值模拟及材料损伤机理方面的研究。近年来,发表学术论文20余篇,包括Surface & Coating Technology、Journal of Alloys and Compounds、《中国有色金属学报》《材料导报》等,出版学术专著1部。sunliliwy@163.com   
作者简介:  王勇,东北石油大学教授、博士研究生导师,省级领军人才梯队后备带头人。目前主要从事材料腐蚀与防护、能源材料电化学、材料计算机模拟等方面的研究工作。主持国家自然科学基金2项、省重点研发项目1项、省自然科学基金3项、中国博士后基金1项等省部级以上项目10多项。发表学术论文50多篇,出版学术专著1部。担任中国腐蚀与防护学会理事。
引用本文:    
王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
WANG Yong, SUN Tianhao, LI Yongcun, SUN Lili, JIA Xin, ZHANG Xuyun. First Principle Study of the Microstructure and Mechanical Properties of NbMoTaWV Refractory High-entropy Alloy Under High Pressure. Materials Reports, 2024, 38(18): 22120037-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120037  或          http://www.mater-rep.com/CN/Y2024/V38/I18/22120037
1 Yeh J W. Annales de Chimie Science des Matériaux, 2006, 31(6), 633.
2 Gao N, Liu X W, Wu W F, et al. Materials Reports, 2021, 35(17), 17037 (in Chinese).
高妞, 刘鑫旺, 吴伟峰, 等. 材料导报, 2021, 35(17), 17037.
3 Peng H Y, Kang Z X, Long Y, et al. Vacuum, 2022, 199, 110930.
4 Gu P F, Qi T B, Chen L, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105834.
5 Yi G M, Ding Y, Cheng Y H, et al. Journal of Alloys and Compounds, 2022, 916, 165384.
6 Xin S W, Shen X, Du C C, et al. Journal of Alloys and Compounds, 2021, 853, 155995.
7 He J Z, Qiao Y T, Wang R X, et al. Journal of Alloys and Compounds, 2022, 891, 161963.
8 Hu Y L, Bai L H, Tong Y G, et al. Journal of Alloys and Compounds, 2020, 827, 153963.
9 Bai L H, Hu Y L, Liang X B, et al. Journal of Alloys and Compounds, 2020, 857, 157542.
10 Nong Z S, Wang H Y, Zhu J C. International Journal of Minerals, Metallurgy and Materials, 2020, 27(10), 1405.
11 Chang C, Zhang H, Lai Y, et al. Materials Reports, 2022, 36(14), 62 (in Chinese).
常超, 张辉, 来媛, 等. 材料导报, 2022, 36(14), 62.
12 Yao X J, Shi X F, Wang Y P, et al. Fusion Engineering and Design, 2018, 137, 35.
13 Liu H B, Liu L, Yang L X, et al. Journal of Lanzhou University (Natural Sciences), 2022, 58(1), 137 (in Chinese).
刘海博, 刘雷, 杨龙星, 等. 兰州大学学报(自然科学版), 2022, 58(1), 137.
14 Mehl M J, Osburn J E, Papaconstantopoulos D A, et al. Physical Review B, 1990, 41(15), 10311.
15 Liang H Y, Bai R, He X L, et al. Materials Reports, 2018, 32(2), 333 (in Chinese).
梁红玉, 白瑞, 贺秀丽, 等. 材料导报, 2018, 32(2), 333.
16 Tian Y J, Xu B, Zhao Z S. International Journal of Refractory Metals and Hard Materials, 2012, 33, 93.
17 Wang Y, Li M Y, Sun L L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(1), 94 (in Chinese).
王勇, 李明宇, 孙丽丽, 等. 中国有色金属学报, 2020, 30(1), 94.
18 Dai Y Y, Liu S S, Tan Y J, et al. Hot Working Technology, 2020, 49(18), 56 (in Chinese).
代永娟, 刘帅帅, 谭永军, 等. 热加工工艺, 2020, 49(18), 56.
19 Fu C L, Wang X, Ye Y Y, et al. Intermetallics, 1999, 7(2), 179.
20 Hu J Q, Xie M, Chen Y T, et al. Materials Reports, 2018, 32(14), 2467 (in Chinese).
胡洁琼, 谢明, 陈永泰, 等. 材料导报, 2018, 32(14), 2467.
21 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
22 Wang H Y. The composition design and first principles calculation of MoNbTa-based refractory high entropy alloys. Master’s Thesis, Shenyang Aerospace University, China, 2019(in Chinese).
王浩玉. MoNbTa基难熔高熵合金成分设计及第一性原理计算. 硕士学位论文, 沈阳航空航天大学, 2019.
23 Jian Y X, Huang Z F, Wang Y, et al. Materials, 2020, 13(19), 4221.
24 Wang L X, Yao S, Wen B. Materials Reports, 2019, 33(S2), 356 (in Chinese).
王兰馨, 姚山, 温斌. 材料导报, 2019, 33(S2), 356.
25 Ding X K, Sun K, Zhang M, et al. Journal of Xi’an Jiaotong University, 2018, 52(11), 86 (in Chinese).
丁欣恺, 孙琨, 张猛, 等. 西安交通大学学报, 2018, 52(11), 86.
26 Levine J B, Tolbert S H, Kaner R B. Advanced Functional Materials, 2009, 19(22), 3519.
27 Zhao X, Yu Z T, Zheng J M, et al. Materials Reports, 2019, 33(S1), 293 (in Chinese).
赵曦, 于振涛, 郑继明, 等. 材料导报, 2019, 33(S1), 293.
28 Koval N E, Juaristi J I, Muio R D, et al. Intermetallics, 2019, 106, 130.
29 Wang Y P, Tang Y, Kou Z L, et al. International Journal of Refractory Metals and Hard Materials, 2022, 110, 106015.
30 Qin Y L, Wang Y P, Guan S X, et al. International Journal of Refractory Metals and Hard Materials, 2022, 102, 105718.
31 Ranganathan S I, Ostoja-Starzewski M. Physical Review Letters, 2008, 101(5), 055504.
32 Wang Z H, Zhang J X, Li P, et al. Physica Status Solidi (b), 2021, 258(4), 2000490.
[1] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[2] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[3] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[6] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[7] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-.
[8] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-.
[9] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[10] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[11] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[12] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[13] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[14] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[15] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed