First Principle Study of the Microstructure and Mechanical Properties of NbMoTaWV Refractory High-entropy Alloy Under High Pressure
WANG Yong1,2, SUN Tianhao1,2, LI Yongcun1,2, SUN Lili1,2,*, JIA Xin3, ZHANG Xuyun1,2
1 School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China 2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China 3 Engineering, Procurement & Equipment Department, China National Petroleum Corporation, Beijing 100007, China
Abstract: NbMoTaWV refractory high-entropy alloy has excellent high temperature resistance. However, the effect of ultra-high pressure on the structure and mechanical properties of the alloy is still unknown. In this work, the electronic structure characteristics of NbMoTaWV refractory high-entropy alloy were studied in the pressure range of 0—200 GPa by using a first principle calculation method based on density functional theory. Analyzed the influence of pressure on the thermodynamic properties of alloy such as formation enthalpy and melting point, as well as the mechanical properties of density, toughness, hardness, yield strength and elastic isotropy. In addition, the microscopic mechanism of stability enhancement of high-entropy alloy under high pressure was clarified. The results show that the alloys are metallic in the pressure range of 0—200 GPa. With the increase of pressure, the electron delocalization in the alloy is enhanced, the interaction force between atoms increases, the bonding ability and strength of adjacent atoms increase, which results the stability of alloy is improved. The ideal pressure range of experimental research on this alloy is under 0—100 GPa. Among which, the alloy in the pressure range of 50—75 GPa is obviously elastically isotropic, and the tendency of microcrack generation is low under working conditions;the hardness and yield strength of alloy are high in the pressure range of 75—100 GPa;under 75 GPa, the two performances reached 11.58 GPa and 3.86 GPa respectively;alloy has excellent comprehensive mechanical properties in the pressure range of 75—100 GPa.
通讯作者:
*孙丽丽,通信作者,东北石油大学博士、副教授。目前主要从事多相流数值模拟及材料损伤机理方面的研究。近年来,发表学术论文20余篇,包括Surface & Coating Technology、Journal of Alloys and Compounds、《中国有色金属学报》《材料导报》等,出版学术专著1部。sunliliwy@163.com
王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
WANG Yong, SUN Tianhao, LI Yongcun, SUN Lili, JIA Xin, ZHANG Xuyun. First Principle Study of the Microstructure and Mechanical Properties of NbMoTaWV Refractory High-entropy Alloy Under High Pressure. Materials Reports, 2024, 38(18): 22120037-6.
1 Yeh J W. Annales de Chimie Science des Matériaux, 2006, 31(6), 633. 2 Gao N, Liu X W, Wu W F, et al. Materials Reports, 2021, 35(17), 17037 (in Chinese). 高妞, 刘鑫旺, 吴伟峰, 等. 材料导报, 2021, 35(17), 17037. 3 Peng H Y, Kang Z X, Long Y, et al. Vacuum, 2022, 199, 110930. 4 Gu P F, Qi T B, Chen L, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105834. 5 Yi G M, Ding Y, Cheng Y H, et al. Journal of Alloys and Compounds, 2022, 916, 165384. 6 Xin S W, Shen X, Du C C, et al. Journal of Alloys and Compounds, 2021, 853, 155995. 7 He J Z, Qiao Y T, Wang R X, et al. Journal of Alloys and Compounds, 2022, 891, 161963. 8 Hu Y L, Bai L H, Tong Y G, et al. Journal of Alloys and Compounds, 2020, 827, 153963. 9 Bai L H, Hu Y L, Liang X B, et al. Journal of Alloys and Compounds, 2020, 857, 157542. 10 Nong Z S, Wang H Y, Zhu J C. International Journal of Minerals, Metallurgy and Materials, 2020, 27(10), 1405. 11 Chang C, Zhang H, Lai Y, et al. Materials Reports, 2022, 36(14), 62 (in Chinese). 常超, 张辉, 来媛, 等. 材料导报, 2022, 36(14), 62. 12 Yao X J, Shi X F, Wang Y P, et al. Fusion Engineering and Design, 2018, 137, 35. 13 Liu H B, Liu L, Yang L X, et al. Journal of Lanzhou University (Natural Sciences), 2022, 58(1), 137 (in Chinese). 刘海博, 刘雷, 杨龙星, 等. 兰州大学学报(自然科学版), 2022, 58(1), 137. 14 Mehl M J, Osburn J E, Papaconstantopoulos D A, et al. Physical Review B, 1990, 41(15), 10311. 15 Liang H Y, Bai R, He X L, et al. Materials Reports, 2018, 32(2), 333 (in Chinese). 梁红玉, 白瑞, 贺秀丽, 等. 材料导报, 2018, 32(2), 333. 16 Tian Y J, Xu B, Zhao Z S. International Journal of Refractory Metals and Hard Materials, 2012, 33, 93. 17 Wang Y, Li M Y, Sun L L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(1), 94 (in Chinese). 王勇, 李明宇, 孙丽丽, 等. 中国有色金属学报, 2020, 30(1), 94. 18 Dai Y Y, Liu S S, Tan Y J, et al. Hot Working Technology, 2020, 49(18), 56 (in Chinese). 代永娟, 刘帅帅, 谭永军, 等. 热加工工艺, 2020, 49(18), 56. 19 Fu C L, Wang X, Ye Y Y, et al. Intermetallics, 1999, 7(2), 179. 20 Hu J Q, Xie M, Chen Y T, et al. Materials Reports, 2018, 32(14), 2467 (in Chinese). 胡洁琼, 谢明, 陈永泰, 等. 材料导报, 2018, 32(14), 2467. 21 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698. 22 Wang H Y. The composition design and first principles calculation of MoNbTa-based refractory high entropy alloys. Master’s Thesis, Shenyang Aerospace University, China, 2019(in Chinese). 王浩玉. MoNbTa基难熔高熵合金成分设计及第一性原理计算. 硕士学位论文, 沈阳航空航天大学, 2019. 23 Jian Y X, Huang Z F, Wang Y, et al. Materials, 2020, 13(19), 4221. 24 Wang L X, Yao S, Wen B. Materials Reports, 2019, 33(S2), 356 (in Chinese). 王兰馨, 姚山, 温斌. 材料导报, 2019, 33(S2), 356. 25 Ding X K, Sun K, Zhang M, et al. Journal of Xi’an Jiaotong University, 2018, 52(11), 86 (in Chinese). 丁欣恺, 孙琨, 张猛, 等. 西安交通大学学报, 2018, 52(11), 86. 26 Levine J B, Tolbert S H, Kaner R B. Advanced Functional Materials, 2009, 19(22), 3519. 27 Zhao X, Yu Z T, Zheng J M, et al. Materials Reports, 2019, 33(S1), 293 (in Chinese). 赵曦, 于振涛, 郑继明, 等. 材料导报, 2019, 33(S1), 293. 28 Koval N E, Juaristi J I, Muio R D, et al. Intermetallics, 2019, 106, 130. 29 Wang Y P, Tang Y, Kou Z L, et al. International Journal of Refractory Metals and Hard Materials, 2022, 110, 106015. 30 Qin Y L, Wang Y P, Guan S X, et al. International Journal of Refractory Metals and Hard Materials, 2022, 102, 105718. 31 Ranganathan S I, Ostoja-Starzewski M. Physical Review Letters, 2008, 101(5), 055504. 32 Wang Z H, Zhang J X, Li P, et al. Physica Status Solidi (b), 2021, 258(4), 2000490.