Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 22090255-8    https://doi.org/10.11896/cldb.22090255
  无机非金属及其复合材料 |
氟化对钛锂离子筛制备及性能的影响
张理元1,2,3,*, 张菁菁1, 吴娜1, 沈如倩1
1 内江师范学院化学化工学院,四川 内江 641112
2 果类废弃物资源化四川省高等学校重点实验室,四川 内江 641112
3 沱江流域特色农业资源四川省科技资源共享服务平台,四川 内江 641112
Effect of Fluorination on Preparation and Properties of Titanium Lithium Ion Sieve
ZHANG Liyuan1,2,3,*, ZHANG Jingjing1, WU Na1, SHEN Ruqian1
1 College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, Sichuan,China
2 Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College, Neijiang 641112, Sichuan, China
3 Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Neijiang 641112, Sichuan, China
下载:  全 文 ( PDF ) ( 13099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以二氧化钛为钛源,氢氧化锂为锂源,氟化铵为改性剂,采用水热法制备氟改性钛酸锂 (F-Li2TiO3),经盐酸洗脱得到氟化钛锂离子筛(F-H2TiO3)。研究氟化铵用量和煅烧温度对Li2TiO3前驱体形貌、晶体结构的影响以及F-Li2TiO3洗脱和F-H2TiO3吸附性能。采用扫描电子显微镜(SEM)、X 射线衍射仪(XRD)、比表面积分析仪(BET)、X 射线光电子能谱仪(XPS)分别对样品的表面形貌、晶相组成、比表面积和孔结构、元素含量和价态进行了表征分析。结果表明,氟钛比为0.15时,可以得到颗粒分散且具有多孔结构的F-Li2TiO3,经过700 ℃热处理的样品各晶面结晶度最完整,洗脱率达到96.98%,显著高于未改性样品(90.55%)。F-H2TiO3最大吸附容量达到46.52 mg/g,与未改性样品(35.51 mg/g)相比有较大提升,对Li+的吸附速率明显加快,吸附平衡时间从12 h缩短到10 h。F-H2TiO3吸附等温线符合Langmuir模型,吸附动力学符合伪二级动力学模型,吸附方式为化学单层吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张理元
张菁菁
吴娜
沈如倩
关键词:  钛锂离子筛  氟化  水热法  洗脱率  吸附容量    
Abstract: Fluoride modified lithium titanate (F-Li2TiO3) was prepared by hydrothermal method with titanium dioxide as titanium source, lithium hydroxide as lithium source and ammonium fluoride as modifier, followed by picking with hydrochloric acid to obtain fluoride modified titanium fluoride lithium ion sieve (F-H2TiO3). The effects of ammonium fluoride content and calcination temperature on the surface morphology and crystal structure of Li2TiO3 precursor were studied. The elution performance of F-Li2TiO3 and the adsorption performance of F-H2TiO3 were investigated. The surface morphology, crystal phase, specific surface area and pore structure, element content and valence state of the samples were characte-rized using scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area analyzer (BET), and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that F-Li2TiO3 with relatively dispersed particles and porous accumulation could be obtained when the fluorine titanium ratio was 0.15. The crystallinity of each crystal surface was the most complete with a calcination at 700 ℃, and the elution rate reached 96.98%, which was significantly higher than that of unmodified samples (90.55%). The maximum adsorption capacity of F-H2TiO3 reached 46.52 mg/g, which was greatly improved compared with 35.51 mg/g of the unmodified sample. The Li+ adsorption speed was significantly accelerated, and the adsorption equilibrium time was shortened from 12 h to 10 h. The adsorption isotherm conforms to the Langmuir model, the adsorption kinetics follows to pseudo second-order kinetic model, and the adsorption way is chemical monolayer adsorption.
Key words:  titanium-lithium ion sieve    fluorination    hydrothermal process    elution rate    adsorption capacity
发布日期:  2024-10-12
ZTFLH:  O647.3  
基金资助: 四川省科技计划(2023YFG0247);内江师范学院大学生创新项目(X2022001)
通讯作者:  *张理元,通信作者,2014年12月毕业于四川大学材料学专业,获博士学位。目前为内江师范学院化学化工学院教授,主要从事无机功能材料、环境保护材料研究。主持四川省科技计划项目2项、四川省教育厅重点项目1项。近几年,以第一作者在国内外重要期刊发表核心及以上论文40余篇,其中SCI/EI收录20余篇,以第一发明人授权国家发明专利4项。zhangliyuansir@126.com   
引用本文:    
张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
ZHANG Liyuan, ZHANG Jingjing, WU Na, SHEN Ruqian. Effect of Fluorination on Preparation and Properties of Titanium Lithium Ion Sieve. Materials Reports, 2024, 38(18): 22090255-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090255  或          http://www.mater-rep.com/CN/Y2024/V38/I18/22090255
1 Kavanagh L, Keohane J, Cabellos G G, et al. Resources, 2018, 7(3), 57.
2 Zhong H, Zhou Y F, Yin H A. Comprehensive Utilization of Mineral Resources, 2003(1), 23(in Chinese).
钟辉, 周燕芳, 殷辉安. 矿产综合利用, 2003(1), 23.
3 Wen B J, Chen Y C, Wang G S, et al. Chinese Journal of Engineering Science, 2019, 21(1), 68(in Chinese).
文博杰, 陈毓川, 王高尚, 等. 中国工程科学, 2019, 21(1), 68.
4 Bian W B, Pan J M. Chemical Industry and Engineering Progress, 2020, 39(6), 2206.
5 Li W J, Gao J M, Zhao Q, et al. Journal of Functional Materials, 2020, 51(12), 12120.
6 Guo J M, Liu M Y, Wu Q, et al. CIESC Journal, 2020, 71(2), 879.
7 Dong D Q, Wang Y S, Fang C. CIESC Journal, 2017, 68(7), 2812.
8 Zhang L, Zhou D, He G, et al. Materials Letters, 2014, 135, 206.
9 Zhang L Y, Liu Y W, Huang Lan, et al. RSC Advances, 2018, 8, 1385.
10 Zhang L, Zhou D, He G, et al. Materials Letters, 2015, 145, 351.
11 Shi X C, Zhang Z B, Zhou D F, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 253.
12 Fu Y P, Su Y H, Lin C H, et al. Ceramics International, 2009, 35(8), 3463.
13 Sun Y K, Oh I H, Kim K Y. Industrial & Engineering Chemistry Research, 1997, 36(11), 4839.
14 Naghash A R, Lee J Y. Journal of Power Sources, 2000, 85(2), 284.
15 Modabberi S, Namayandeh A, Setti M, et al. Applied Clay Science, 2019, 168, 56.
16 Chitrakar R, Kanoh H, Miyai Y, et al. Cheminform, 2010, 32(4), 4.
17 Zhong J, Lin S, Yu J G. Journal of Colloid and interface Science, 2020, 572, 107.
18 Jiang H X, Yang Y, Sun S Y, et al. The Canadian Journal of Chemical Engineering, 2019, 98(2), 544.
19 Jiang H X, Zhang S Y, Yang Y, et al. Adsorption, 2020, 26 (7), 1039.
20 Tang N, Gong J K, Xiang J. Inorganic Chemicals Industry, 2020, 52(8), 51(in Chinese).
唐娜, 龚经款, 项军. 无机盐工业, 2020, 52(8), 51.
21 Zhang R, Lu Q W, Lin S, et al. CIESC Journal, 2021, 72(6), 3053(in Chinese).
张瑞, 陆旗玮, 林森, 等. 化工学报, 2021, 72(6), 3053.
22 Zhang L Y, He G, Zhou D L, et al. Ionics, 2016, 22, 2007.
23 Zhang L Y, Shui Y, Zhao L L, et al. Coatings, 2019, 9(11), 701.
24 Dai X Y, Zhan H L, Qian Z Q, et al. Royal Society of Chemistry Advances, 2021, 11, 34988.
25 Zhou S Y, Guo X J, Yan X, et al. Particuology, 2022, 69, 100.
26 Zhang G T, Zhang J Z, Zeng J B, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629, 167465.
27 Yu C L, Yanagisawa K, Kamiya S, et al. Ceramics International, 2014, 40(1), 1901.
28 Yu C L, Gao D P, Wang F, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(6), 1474(in Chinese).
于成龙, 高丹鹏, 王斐, 等. 中国有色金属学报, 2014, 24(6), 1474.
29 Sadanov E V, Dudka O V, Ksenofontov V A, et al. Materials Letters, 2016, 183(15), 139.
30 Zhu L, Liu Y, Wu W, et al. Journal of Materials Chemistry A, 2015, 3, 15156.
31 Abraham D P, Dees D W, Knuth J, et al. Energy Storage, 2005, 2, 365.
32 Kosova N V, Devyatkina E T, Kaichev V V. Journal of Power Sources, 2007, 174(2), 965.
33 Yin S C, Rho Y H, Swainson I, et al. Chemistry of Materials, 2006, 18, 1901.
34 Xu P, Li Y J, Liu C, et al. Journal of the Chinese Ceramic Society, 2014, 42(9), 1195(in Chinese).
徐鹏, 李佑稷, 刘晨, 等. 硅酸盐学报, 2014, 42(9), 1195.
35 Zhang L Y, Han Y L, Yang J J, et al. Applied Surface Science, 2021, 546, 149089.
36 Li Y Y, Wang H D, Xie J W, et al. Chemical Engineering Journal, 2021, 421, 129986.
37 Tarakina N V, Neder R B, Denisova T A, et al. Dalton Transactions, 2010, 39(35), 8168.
38 Wang L, Meng C G, Han M, et al. Colloid and Interface Science, 2008, 325, 31.
39 Zhang L Y, Zhou D L, Yao Q Q, et al. Applied Surface Science, 2016, 368, 82.
40 Han R, Zou W, Wang Y, et al. Journal of Environmental Radioactivity, 2007, 93, 127.
41 Chitrakar R, Makita Y, Ooi K, et al. Dalton Transactions, 2014, 43, 8933.
42 Naiya T K, Bhattacharya A K, Das S K. Colloid and Interface Science, 2008, 325(1), 48.
[1] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[2] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[3] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[4] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[5] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[6] 张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
[7] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[8] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[9] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[10] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[11] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[12] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[13] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[14] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[15] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed