1 College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, Sichuan,China 2 Key Laboratory of Fruit Waste Treatment and Resource Recycling of the Sichuan Provincial College, Neijiang 641112, Sichuan, China 3 Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Neijiang 641112, Sichuan, China
Abstract: Fluoride modified lithium titanate (F-Li2TiO3) was prepared by hydrothermal method with titanium dioxide as titanium source, lithium hydroxide as lithium source and ammonium fluoride as modifier, followed by picking with hydrochloric acid to obtain fluoride modified titanium fluoride lithium ion sieve (F-H2TiO3). The effects of ammonium fluoride content and calcination temperature on the surface morphology and crystal structure of Li2TiO3 precursor were studied. The elution performance of F-Li2TiO3 and the adsorption performance of F-H2TiO3 were investigated. The surface morphology, crystal phase, specific surface area and pore structure, element content and valence state of the samples were characte-rized using scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area analyzer (BET), and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that F-Li2TiO3 with relatively dispersed particles and porous accumulation could be obtained when the fluorine titanium ratio was 0.15. The crystallinity of each crystal surface was the most complete with a calcination at 700 ℃, and the elution rate reached 96.98%, which was significantly higher than that of unmodified samples (90.55%). The maximum adsorption capacity of F-H2TiO3 reached 46.52 mg/g, which was greatly improved compared with 35.51 mg/g of the unmodified sample. The Li+ adsorption speed was significantly accelerated, and the adsorption equilibrium time was shortened from 12 h to 10 h. The adsorption isotherm conforms to the Langmuir model, the adsorption kinetics follows to pseudo second-order kinetic model, and the adsorption way is chemical monolayer adsorption.
1 Kavanagh L, Keohane J, Cabellos G G, et al. Resources, 2018, 7(3), 57. 2 Zhong H, Zhou Y F, Yin H A. Comprehensive Utilization of Mineral Resources, 2003(1), 23(in Chinese). 钟辉, 周燕芳, 殷辉安. 矿产综合利用, 2003(1), 23. 3 Wen B J, Chen Y C, Wang G S, et al. Chinese Journal of Engineering Science, 2019, 21(1), 68(in Chinese). 文博杰, 陈毓川, 王高尚, 等. 中国工程科学, 2019, 21(1), 68. 4 Bian W B, Pan J M. Chemical Industry and Engineering Progress, 2020, 39(6), 2206. 5 Li W J, Gao J M, Zhao Q, et al. Journal of Functional Materials, 2020, 51(12), 12120. 6 Guo J M, Liu M Y, Wu Q, et al. CIESC Journal, 2020, 71(2), 879. 7 Dong D Q, Wang Y S, Fang C. CIESC Journal, 2017, 68(7), 2812. 8 Zhang L, Zhou D, He G, et al. Materials Letters, 2014, 135, 206. 9 Zhang L Y, Liu Y W, Huang Lan, et al. RSC Advances, 2018, 8, 1385. 10 Zhang L, Zhou D, He G, et al. Materials Letters, 2015, 145, 351. 11 Shi X C, Zhang Z B, Zhou D F, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(1), 253. 12 Fu Y P, Su Y H, Lin C H, et al. Ceramics International, 2009, 35(8), 3463. 13 Sun Y K, Oh I H, Kim K Y. Industrial & Engineering Chemistry Research, 1997, 36(11), 4839. 14 Naghash A R, Lee J Y. Journal of Power Sources, 2000, 85(2), 284. 15 Modabberi S, Namayandeh A, Setti M, et al. Applied Clay Science, 2019, 168, 56. 16 Chitrakar R, Kanoh H, Miyai Y, et al. Cheminform, 2010, 32(4), 4. 17 Zhong J, Lin S, Yu J G. Journal of Colloid and interface Science, 2020, 572, 107. 18 Jiang H X, Yang Y, Sun S Y, et al. The Canadian Journal of Chemical Engineering, 2019, 98(2), 544. 19 Jiang H X, Zhang S Y, Yang Y, et al. Adsorption, 2020, 26 (7), 1039. 20 Tang N, Gong J K, Xiang J. Inorganic Chemicals Industry, 2020, 52(8), 51(in Chinese). 唐娜, 龚经款, 项军. 无机盐工业, 2020, 52(8), 51. 21 Zhang R, Lu Q W, Lin S, et al. CIESC Journal, 2021, 72(6), 3053(in Chinese). 张瑞, 陆旗玮, 林森, 等. 化工学报, 2021, 72(6), 3053. 22 Zhang L Y, He G, Zhou D L, et al. Ionics, 2016, 22, 2007. 23 Zhang L Y, Shui Y, Zhao L L, et al. Coatings, 2019, 9(11), 701. 24 Dai X Y, Zhan H L, Qian Z Q, et al. Royal Society of Chemistry Advances, 2021, 11, 34988. 25 Zhou S Y, Guo X J, Yan X, et al. Particuology, 2022, 69, 100. 26 Zhang G T, Zhang J Z, Zeng J B, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 629, 167465. 27 Yu C L, Yanagisawa K, Kamiya S, et al. Ceramics International, 2014, 40(1), 1901. 28 Yu C L, Gao D P, Wang F, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(6), 1474(in Chinese). 于成龙, 高丹鹏, 王斐, 等. 中国有色金属学报, 2014, 24(6), 1474. 29 Sadanov E V, Dudka O V, Ksenofontov V A, et al. Materials Letters, 2016, 183(15), 139. 30 Zhu L, Liu Y, Wu W, et al. Journal of Materials Chemistry A, 2015, 3, 15156. 31 Abraham D P, Dees D W, Knuth J, et al. Energy Storage, 2005, 2, 365. 32 Kosova N V, Devyatkina E T, Kaichev V V. Journal of Power Sources, 2007, 174(2), 965. 33 Yin S C, Rho Y H, Swainson I, et al. Chemistry of Materials, 2006, 18, 1901. 34 Xu P, Li Y J, Liu C, et al. Journal of the Chinese Ceramic Society, 2014, 42(9), 1195(in Chinese). 徐鹏, 李佑稷, 刘晨, 等. 硅酸盐学报, 2014, 42(9), 1195. 35 Zhang L Y, Han Y L, Yang J J, et al. Applied Surface Science, 2021, 546, 149089. 36 Li Y Y, Wang H D, Xie J W, et al. Chemical Engineering Journal, 2021, 421, 129986. 37 Tarakina N V, Neder R B, Denisova T A, et al. Dalton Transactions, 2010, 39(35), 8168. 38 Wang L, Meng C G, Han M, et al. Colloid and Interface Science, 2008, 325, 31. 39 Zhang L Y, Zhou D L, Yao Q Q, et al. Applied Surface Science, 2016, 368, 82. 40 Han R, Zou W, Wang Y, et al. Journal of Environmental Radioactivity, 2007, 93, 127. 41 Chitrakar R, Makita Y, Ooi K, et al. Dalton Transactions, 2014, 43, 8933. 42 Naiya T K, Bhattacharya A K, Das S K. Colloid and Interface Science, 2008, 325(1), 48.