Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 22040312-10    https://doi.org/10.11896/cldb.22040312
  金属与金属基复合材料 |
考虑静荷载与环境耦合作用的钢结构涂层劣化实验研究
戚彦福, 蔺鹏臻*, 李岩, 潘亚磊
兰州交通大学甘肃省道路桥梁与地下工程重点实验室,兰州 730070
Experimental Study of Steel Structure Coating Deterioration Considering Coupling Effect of Static Load and Environment
QI Yanfu, LIN Pengzhen*, LI Yan, PAN Yalei
Key Laboratory of Road & Bridge and Underground Engineering of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 61370KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究钢结构涂层在静荷载与大温差、风沙侵蚀作用下的劣化性能,设计了钢结构涂层的静荷载加载系统;以钢桥常见的普通型和长效型体系为对象,通过静力加载与温差控制、气流挟沙喷射法开展实验研究。采用拉开法测试了静荷载与大温差耦合作用下涂层的劣化情况,并对涂层的附着、内聚破坏模式进行定量化测试;结合拉开法及厚度测试结果,得到了涂层抗力的动态劣化过程;采用气流挟沙喷射法研究了静荷载与大温差作用下涂层的耐冲蚀性能,综合实验结果,得到涂层在静荷载与环境耦合作用下工作性能的退化过程。研究结果表明:静荷载与环境耦合作用使面漆抗力衰减至防护功能破坏后,大温差导致涂层材料向脆性转变,静荷载加速涂层的劣化,风沙冲蚀作用造成涂层从体系剥离;耦合作用下体系的抗力快速衰减,涂层逐次退出工作,涂装体系完全丧失抗力,最终从基材上剥离。对于实验涂装体系,经历30 d静荷载与大温差作用后,涂层附着力最大降低8.97%,厚度、冲蚀量、临界冲蚀角最大分别增加25.3%、46.15%、17.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戚彦福
蔺鹏臻
李岩
潘亚磊
关键词:  钢结构涂层  静荷载  大温差  风沙冲蚀  劣化机理  试验研究    
Abstract: In order to study the deterioration performance of steel structure coating under the static load, temperature variation and sandstorm erosion, a static loading system for steel structure coating specimen was designed. Then the experiment research was carried out on the conventional and durable coating system of steel bridges by static loading, temperature control and the airflow spray method. The degradation of coatings under the coupling action of static load and temperature variation were tested by the pull-of test, and the coating damage modes of adhesion and cohesive were quantitatively measured. Combined with pull-of test and thickness measurement results, the dynamic deterioration process of coating resistance was obtained. The erosion resistance of coatings under the static load and temperature variation was studied by the airflow spray method, and the degradation process of coatings working performance under the coupling action of static load and environment was obtained based on the experimental results. The results show that the coupling effect of static load and environment makes the resistance of topcoat attenuate until its protective function is destroyed, the temperature variation causes coating materials transform to brittle materials, static load accelerates the dete-rioration rate of coating, and sandstorm erosion is going to strip coatings from the system. Then the coatings are deactivated successively since the coupling action cause the recession of system resistance, the coating system completely loses resistance and eventually peels off from the substrate. For the experimental coating systems, after 30 d of static load and temperature variation, the adhesion of coating decreased by 8.97%, the thickness, erosion amount and critical erosion angle increased by 25.3%, 46.15% and 17.4%, respectively.
Key words:  steel structure coating    static load    large temperature difference    sand erosion    deterioration mechanism    experimental research
发布日期:  2024-10-12
ZTFLH:  TU593  
基金资助: 国家自然科学基金重大项目(11790281);甘肃省交通运输厅科研项目(2020-08)
通讯作者:  *蔺鹏臻,通信作者,兰州交通大学土木工程学院教授、博士研究生导师。1999年甘肃农业大学工业与民用建筑专业本科毕业,2003年兰州交通大学桥梁与隧道工程专业硕士毕业,2011年兰州交通大学桥梁与隧道工程专业博士毕业。目前主要从事钢结构桥梁涂装耐久性、桥梁结构性能理论及应用、桥梁结构耐久性等方面的研究工作。参与国家基金重大项目、中科院学部重大战略咨询项目、国家自然科学基金高铁联合项目各1项,主持国家自然科学基金等40余项科研课题。出版著作8部,发表论文200余篇,包括《中国公路学报》《岩土工程学报》《中国铁道科学》等。pzhlin@mail.lzjtu.cn   
作者简介:  戚彦福,2013年6月、2017年6月分别于兰州交通大学和兰州理工大学获得工学学士学位和硕士学位。现为兰州交通大学土木工程学院博士研究生,在蔺鹏臻教授的指导下进行研究。目前主要研究领域为钢结构桥梁涂装劣化及损伤机理。
引用本文:    
戚彦福, 蔺鹏臻, 李岩, 潘亚磊. 考虑静荷载与环境耦合作用的钢结构涂层劣化实验研究[J]. 材料导报, 2024, 38(18): 22040312-10.
QI Yanfu, LIN Pengzhen, LI Yan, PAN Yalei. Experimental Study of Steel Structure Coating Deterioration Considering Coupling Effect of Static Load and Environment. Materials Reports, 2024, 38(18): 22040312-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040312  或          http://www.mater-rep.com/CN/Y2024/V38/I18/22040312
1 Lyon S B, Bingham R, Mills D J. Progress in Organic Coatings, 2017, 102, 2.
2 Tang P, Liu L X, Cao D P, et al. Materials Protection, 2020, 53(2), 126(in Chinese).
汤朋, 刘兰轩, 曹东萍, 等. 材料保护, 2020, 53(2), 126.
3 Bian M H, Peng J N, Yin L Q, et al. Materials Protection, 2019, 52(7), 128(in Chinese).
边美华, 彭家宁, 尹立群, 等. 材料保护, 2019, 52(7), 128.
4 MayerP, Lubecki M, Stosiak M, et al. International Journal of Adhesion and Adhesives, 2022, 117, 103183
5 Miszczyk A, Darowicki K. Progress in Organic Coatings, 2003, 46(1), 49.
6 Pan Y, Zhang S P, Zhou J L, et al. Paint and Coatings Industry, 2010, 40(4), 68(in Chinese).
潘莹, 张三平, 周建龙, 等. 涂料工业, 2010, 40(4), 68.
7 Shin A, Bhang S, Kim H. et al. Journal of Industrial and Engineering Chemistry, 2021, 97, 402.
8 Hao Y H, Duan G L, Ren Y, et al. Journal of Building Materials, 2015, 18(4), 596(in Chinese).
郝贠洪, 段国龙, 任莹, 等. 建筑材料学报, 2015, 18(4), 596.
9 Hao Y H, Li J, Liu Y L. Materials Reports, 2019, 33(8), 1389(in Chinese).
郝贠洪, 李洁, 刘永利. 材料导报, 2019, 33(8), 1389.
10 Hao Y H, Li J, Tian X L, et al. Journal of Building Materials, 2020, 23(2), 407(in Chinese).
郝贠洪, 李洁, 田旭乐, 等. 建筑材料学报, 2020, 23(2), 407.
11 Qian A, Wang P, Tan X M, et al. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(S1), 84(in Chinese).
钱昂, 王鹏, 谭晓明, 等. 机械科学与技术, 2017, 36(S1), 84.
12 Smith S, Caillouette L, Jourdan J, et al. In:Pipelines 2015 Conference:Recent Advances in Underground Pipeline Engineering and Construction. Maryland, 2015, pp.1677.
13 Fredj N, Cohendoz S, Feaugas X, et al. Progress in Organic Coatings, 2008, 63(3), 316.
14 Fredj N, Cohendoz S, Feaugas X, et al. Progress in Organic Coatings, 2011, 72(3), 260.
15 Pan C, Cui Y, Liu L, et al. Journal of Materials Engineering and Performance, 2020, 29(2), 1400.
16 Lazorenko G, Kasprzhitskii A, Nazdracheva T. Construction and Building Materials, 2021, 288, 123115.
17 Li K. Research for the steel highway bridge design method of probability limited status based on reliability theory. Ph.D. Thesis, Tongji University, China, 2007 (in Chinese).
李昆. 基于可靠度理论的公路钢桥概率极限状态设计方法研究. 博士学位论文, 同济大学, 2007.
18 Fang B Y, Han E H, Wang J Q, et al. Journal of Aeronautical Materials, 2003, 23(3), 33(in Chinese)
方丙炎, 韩恩厚, 王俭秋, 等. 航空材料学报, 2003, 23(3), 33.
19 Nachlas J A. Quality and Reliability Engineering International, 1986, 2(1), 3.
20 Wang Y D, Tang Y C. Communications in Statistics:Theory and Methods, 2021, 49(13/15), 3663.
21 Li Y Y, Zhang Q, Chen Y, et al. Journal of Desert Research, 2014, 34(1), 206(in Chinese).
李岩瑛, 张强, 陈英, 等. 中国沙漠, 2014, 34(1), 206.
22 Zhu W B, Zhu L Q. Journal of Henan University (Natural Science), 2017, 47(6), 631(in Chinese).
朱文博, 朱连奇. 河南大学学报(自然科学版), 2017, 47(6), 631.
23 Song J, Chun X, Bai X M, et al. Journal of Desert Research, 2016, 36(3), 597(in Chinese).
宋洁, 春喜, 白雪梅, 等. 中国沙漠, 2016, 36(3), 597.
24 Nguyen T, Hubbard J, Pommersheim J. Journal of Coatings Technology, 1996, 68(855), 45.
25 Kallias A N, Imam B, Chryssanthopoulos M K. Structure and Infrastructure Engineering, 2017, 13(4), 440.
[1] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[2] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[3] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed