Abstract: The improved catalytic activity of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) can significantly improve the performance of hybrid electrolyte lithium-air batteries. The two-dimensional material V2C (MXenes) has attracted much attention due to its rich composition, high specific surface area, and strong stability. Based on the first principles approach of density functional theory (DFT), this work investigated the electronic properties of V2C, the optimal adsorption sites of oxygen on the V2C surface under alkaline conditions, and the redox process of oxygen on the V2C surface, calculated the free energy and overpotential, and finally compared it with the MnO2 catalyst commonly used in hybrid electrolyte lithium-air batteries. The results showed that V2C has a lower overpotential than the commonly used MnO2 catalyst when used as a catalyst for hybrid electrolyte Li-air batteries, indicated that the catalyst can improve the catalytic performance of the electrode and was a promising bifunctional catalyst for ORR and OER.
通讯作者:
*孙红,沈阳建筑大学机械工程学院教授、博士研究生导师。1992年7月沈阳建筑工程学院机械设计专业本科毕业后到沈阳建筑大学(原沈阳建筑工程学院)工作至今,1998年3月沈阳建筑工程学院固体力学专业硕士毕业;2005年12月西安交通大学动力工程及工程热物理专业博士毕业。目前主要从事燃料电池、锂空气电池和全钒液流电池电极材料研究。发表论文200余篇,包括Journal of Power Sources、ACS Applied Materials & Interfaces、Applied Energy、International Journal of Hydrogen Energy、Journal of the Electrochemical、Electrochimica Acta、Energy等。sunhongwxh@sina.com
生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
SHENG Jianping, YU Mingfu, LI Jie, SUN Hong. Study on Catalytic Mechanism of Hybrid Electrolyte Lithium-Air Battery Based on V2C Catalyst. Materials Reports, 2024, 38(10): 23030161-7.
1 Herfurth H J. Industrial Laser Solutions, 2009, 24(5), 13. 2 Kang J H, Lee J, Jung J W, et al. ACS Nano, 2020, 14(11), 14549. 3 Wang F, Liang C S, Xu D L, et al. Journal of Inorganic Materials, 2012, 27(12), 1233 (in Chinese). 王芳, 梁春生, 徐大亮, 等. 无机材料学报, 2012, 27(12), 1233. 4 Girishkumar G, McCloskey B, Luntz A C, et al. The Journal of Physical Chemistry Letters, 2010, 1(14), 2193. 5 Jung H G, Hassoun J, Park J B, et al. Nature Chemistry, 2012, 4(7), 579. 6 Rai V, Lee K P, Safanama D, et al. ACS Applied Energy Materials, 2020, 3(9), 9417. 7 Hale W, Choudhury P. Catalysts, 2022, 12(3), 260. 8 VahidMohammadi A, Rosen J, Gogotsi Y. Science, 2021, 372(6547), eabf1581. 9 Nan J, Guo X, Xiao J, et al. Small, 2021, 17(9), 1902085. 10 Yang X, Zhang X, Lu Z, et al. Physical Review Applied, 2021, 15(4), 044053. 11 Cheng F, Chen J. Chemical Society Reviews, 2012, 41(6), 2172. 12 Kimmel Y C, Xu X, Yu W, et al. ACS Catalysis, 2014, 4(5), 1558. 13 Li F, Ohnishi R, Yamada Y, et al. Chemical Communications, 2013, 49(12), 1175. 14 Mahne N, Fontaine O, Thotiyl M O, et al. Chemical Science, 2017, 8(10), 6716. 15 VahidMohammadi A, Mojtabavi M, Caffrey N M, et al. Advanced Materials, 2019, 31(8), 1806931. 16 He H, Xia Q, Wang B, et al. Chinese Chemical Letters, 2020, 31(4), 984. 17 Xie Y, Naguib M, Mochalin V N, et al. Journal of the American Chemical Society, 2014, 136(17), 6385. 18 Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. Nanoscale, 2016, 8(17), 9128. 19 Li L, Wei Z D, Li L L et al. Journal of Chemistry, 2006, 64(4), 287 (in Chinese). 李莉, 魏子栋, 李兰兰, 等. 化学学报, 2006, 64(4), 287. 20 Wang Y, He P, Zhou H. Energy & Environmental Science, 2011, 4(12), 4994. 21 He P, Zhang T, Jiang J, et al. The Journal of Physical Chemistry Letters, 2016, 7(7), 1267. 22 Manthiram A, Li L. Advanced Energy Materials, 2015, 5(4), 1401302. 23 Zheng J P, Andrei P, Hendrickson M, et al. Journal of the Electrochemical Society, 2010, 158(1), A43. 24 Wang Y, Zhou H. Journal of Power Sources, 2010, 195(1), 358. 25 Shan Q, Mu X, Alhabeb M, et al. Electrochemistry Communications, 2018, 96, 103. 26 Arya A, Carter E A. The Journal of Chemical Physics, 2003, 118(19), 8982. 27 Skúlason E, Karlberg G S, Rossmeisl J, et al. Physical Chemistry Chemical Physics, 2007, 9(25), 3241. 28 Radziuk D, Möhwald H. Physical Chemistry Chemical Physics, 2016, 18(1), 21. 29 Delley B. The Journal of Chemical Physics, 2000, 113(18), 7756. 30 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865. 31 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787. 32 Yang X, Zhang Y, Fu Z, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28206. 33 Zhan C, Sun W, Kent P R C, et al. The Journal of Physical Chemistry C, 2018, 123(1), 315. 34 Kurtoglu M, Naguib M, Gogotsi Y, et al. Mrs Communications, 2012, 2, 133. 35 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 74. 36 Hu J, Xu B, Ouyang C, et al. The Journal of Physical Chemistry C, 2014, 118(42), 24274. 37 Miao P C. First principles study on the adsorption behavior and catalytic process of CO on the surface of CeO2(111). Master’s Thesis, Harbin Institute of Technology, 2019 (in Chinese). 缪鹏程. CeO2(111)表面上CO的吸附行为和催化过程的第一性原理研究. 硕士学位论文, 哈尔滨工业大学, 2019. 38 Nørskov J K, Rossmeisl J, Logadottir A, et al. The Journal of Physical Chemistry B, 2004, 108(46), 17886. 39 Fei H, Dong J, Feng Y, et al. Nature Catalysis, 2018, 1(1), 63. 40 Nørskov J K, Bligaard T, Logadottir A, et al. Journal of the Electrochemical Society, 2005, 152(3), J23. 41 Anantharaj S, Ede S R, Karthick K, et al. Energy & Environmental Science, 2018, 11(4), 744.