Effect of ZIFs Materials on the Oxygen Reduction Performance of Fe/N/C Catalysts
SONG Dongmei1,2, ZHENG Qiuyan1,2, PAN Tingxian1,2, HU Changgang1,2, TONG Xin1,2, TIAN Juan1,2,*
1 School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China 2 Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
Abstract: Transition metal/nitrogen/carbon (M/N/C) catalysts are the most promising candidates to replace platinum-based catalysts for oxygen reduction reaction (ORR). Zeolitic imidazolate frameworks (ZIFs) are ideal precursors for the preparation of M/N/C catalysts since they combine the high stability of inorganic zeolites and the high specific surface area, high porosity, and tunable pore structure of MOFs materials. In this work, FeN/C-Zx catalysts were synthesized using FeSO4·7H2O, 1, 10-phenanthroline, and ZIFs as iron, nitrogen, and carbon precursors, respectively. The effect of using different ZIFs as carbon precursors on the ORR activity of FeN/C-Zx catalysts were investigated. The structure of the catalyst was characterized by X-ray diffraction, specific surface area and pore size distribution test, and transmission electron microscope. The catalytic activity of the catalyst for ORR was tested by linear scanning voltammetry. The results show that the FeN/C-Z8 catalyst exhibits the best ORR activity, a small Tafel slope (64.98 mV/dec) with a nearly four-electron reaction process, and a good stability with only 20 mV negative shift in half-wave potential after 25 000 cycles of accelerated degradation tests. The Fe3C compound, which can effectively improve the catalytic activity, present in the FeN/C-Z8 catalyst;the high specific surface area (550.09 m2/g) and pore volume (1.36 cm3/g), the abundant micropore and mesoporous structure, as well as the uniform distribution of transition metals on the ZIFs materials and the small catalyst particles size due to the volatilization of Zn2+ during the carbonization process, are the possible reasons to increase the ORR catalytic performance of FeN/C-Z8 catalyst.
1 Xiong M, He S R, Zhang Y, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(4), 19(in Chinese). 熊牡, 何仕荣, 张勇, 等. 重庆工商大学学报(自然科学版), 2023, 40(4), 19. 2 Stephens I E L, Bondarenko A S, Grønbjerg U, et al. Energy & Environmental Science, 2012, 5(5), 6744. 3 Li X, Liu X, Wang W, et al. Biosensors and Bioelectronics, 2014, 59, 221. 4 Peera S G, Lee T G, Sahu A K. Sustainable Energy & Fuels, 2019, 3(8), 1866. 5 Gouse P S, Kwon H J, Lee T G, et al. Ionics, 2020, 26(4), 1563. 6 Phan A, Doonan C J, Uribe-Romo F J, et al. Accounts of Chemical Research, 2010, 43(1), 58. 7 Park K S, Ni Z, Côté A P, et al. Proceedings of the National Academy of Sciences, 2006, 103(27), 10186. 8 Zhong J Q, He L J, Yang Q X, et al. ChemistrySelect, 2021, 6(6), 1271. 9 Xu X, Zhang X, Xia Z, et al. Journal of Energy Chemistry, 2021, 54, 579. 10 Lin L, Du X, Wang J, et al. Nanotechnology, 2021, 33(10), 105601. 11 Xie X, He C, Li B, et al. Nature Catalysis, 2020, 3(12), 1044. 12 Kong Z, Liu T, Hou K, et al. Journal of Materials Chemistry A, 2022, 10(6), 2826. 13 Guan Y, Li N, Li Y, et al. Nanoscale, 2020, 12(26), 14259. 14 Parkasha A. Journal of Porous Materials, 2020, 27(5), 1377. 15 Proietti E, Jaouen F, Lefèvre M, et al. Nature Communications, 2011, 2(1), 416. 16 Li G, Li J, Cui Q, et al. Journal of Solid State Electrochemistry, 2020, 24(10), 2427. 17 Deng Y, Dong Y, Wang G, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9699. 18 Han J, Meng X, Lu L, et al. Advanced Functional Materials, 2019, 29(41), 1808872. 19 Ma S, Goenaga G A, Call A V, et al. Chemistry-A European Journal, 2011, 17(7), 2063. 20 Guan B Y, Yu L, Lou X W. Advanced Science, 2017, 4(10), 1700247. 21 Lin X, Wang Y, Liu T, et al. ChemistrySelect, 2018, 3(17), 4831. 22 Ge F, Qiao Q, Chen X, et al. Frontiers of Chemical Science and Engineering, 2021, 15(5), 1206. 23 Sun T, Xu L, Wang D, et al. Nano Research, 2019, 12(9), 2067. 24 Zhang M, Yan F, Bai J, et al. Microporous and Mesoporous Materials, 2021, 312, 110627. 25 Lin Q, Shang C, Chen Z, et al. Materials Research Express, 2020, 7(8), 085002. 26 Pan T X, Zheng Q Y, Li M H, et al. Journal of Materials Engineering, 2022, 50(5), 122 (in Chinese). 潘廷仙, 郑秋燕, 李茂辉, 等. 材料工程, 2022, 50(5), 122. 27 Zheng Q Y, Yang Z, Li M H, et al. Journal of Materials Engineering, 2021, 49(6), 132 (in Chinese). 郑秋燕, 杨智, 李茂辉, 等. 材料工程, 2021, 49(6), 132. 28 Zheng Q Y, Shen Y Y, Yang Z, Journal of Functional Materials, 2019, 50(12), 12142 (in Chinese). 郑秋燕, 沈亚云, 杨智, 等. 功能材料, 2019, 50(12), 12142. 29 Hao M G, Dun R M, Su Y M, et al. Nanoscale, 2020, 12(28), 15115. 30 Jiang W J, Gu L, Li L, et al. Journal of the American Chemical Society, 2016, 138(10), 3570. 31 Wu T, Zhang H, Zhang X, et al. Physical Chemistry Chemical Physics, 2015, 17(41), 27527. 32 Wang R, Li J, Cai S, et al. ChemPlusChem, 2016, 81(7), 646. 33 Ren G, Lu X, Li Y, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 4118. 34 Qian Y, Liu Z, Zhang H, et al. ACS Applied Materials & Interfaces, 2016, 8(48), 32875. 35 Shah S S A, Peng L, Najam T, et al. Electrochimica Acta, 2017, 251, 498. 36 Zhang D, Xiang Q. Materials Letters, 2020, 278, 128411. 37 Hu C, Xu J, Lu Z, et al. International Journal of Hydrogen Energy, 2021, 46(63), 32149. 38 Tian P, Zang J, Dong L, et al. International Journal of Hydrogen Energy, 2021, 46(1), 543. 39 Wang X Y, Lin Z W, Jiao Y Q, et al. Nanomaterials, 2021, 11(8), 2106. 40 Ye Y, Li H, Cai F, et al. ACS Catalysis, 2017, 7(11), 7638. 41 Ma M, You S, Wang W, et al. ACS Applied Materials & Interfaces, 2016, 8(47), 32307. 42 Li C, He C, Sun F, et al. ACS Applied Nano Materials, 2018, 1(4), 1801. 43 Chen M, Jiang Y, Mei P, et al. Polymers, 2019, 11(5), 767. 44 Zhai X, Lin W, Liu J, et al. Journal of Electroanalytical Chemistry, 2020, 866, 114170. 45 Wang X X, Prabhakaran V, He Y, et al. Advanced Materials, 2019, 31(31), 1805126.