Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22100278-7    https://doi.org/10.11896/cldb.22100278
  无机非金属及其复合材料 |
ZIFs材料对Fe/N/C催化剂氧还原性能的影响
宋冬梅1,2, 郑秋燕1,2, 潘廷仙1,2, 胡长刚1,2, 同鑫1,2, 田娟1,2,*
1 贵州师范大学化学与材料科学学院,贵阳 550001
2 贵州省功能材料化学重点实验室,贵阳 550001
Effect of ZIFs Materials on the Oxygen Reduction Performance of Fe/N/C Catalysts
SONG Dongmei1,2, ZHENG Qiuyan1,2, PAN Tingxian1,2, HU Changgang1,2, TONG Xin1,2, TIAN Juan1,2,*
1 School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
2 Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
下载:  全 文 ( PDF ) ( 10084KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过渡金属/氮/碳(M/N/C)催化剂是替代铂基催化剂用于氧还原反应(ORR)的理想材料。沸石咪唑骨架(ZIFs)材料结合了无机沸石的高稳定性和MOFs材料的高比表面积、高孔隙率及可调孔结构等特点,是制备M/N/C催化剂的优良前驱体。本工作以FeSO4·7H2O为铁源,1,10-菲啰啉为氮源,探究不同ZIFs材料对FeN/C-Zx催化剂ORR性能的影响。通过X射线衍射、比表面积和孔径分布测试、透射电子显微镜等对催化剂进行结构表征,使用线性扫描伏安法对催化剂ORR催化活性进行测试。结果表明:FeN/C-Z8催化剂表现出最佳的ORR活性,具有较小的Tafel斜率(64.98 mV/dec)且反应过程是近四电子过程;在经过25 000次循环后,FeN/C-Z8催化剂的半波电位仅有20 mV的负移,表现出良好的稳定性。FeN/C-Z8催化剂中存在的Fe3C化合物可有效提高催化剂的催化性能;Zn2+在碳化过程中挥发使FeN/C-Z8催化剂具有较高比表面积(550.09 m2/g)、孔体积(1.36 cm3/g)及丰富的微孔、介孔结构,并促进了过渡金属在ZIFs材料上的均匀分布,使FeN/C-Z8催化剂颗粒较小、分散均匀,这是该催化剂表现出较好的ORR催化性能的可能原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋冬梅
郑秋燕
潘廷仙
胡长刚
同鑫
田娟
关键词:  氧还原反应  非贵金属催化剂  沸石咪唑骨架  FeN掺杂    
Abstract: Transition metal/nitrogen/carbon (M/N/C) catalysts are the most promising candidates to replace platinum-based catalysts for oxygen reduction reaction (ORR). Zeolitic imidazolate frameworks (ZIFs) are ideal precursors for the preparation of M/N/C catalysts since they combine the high stability of inorganic zeolites and the high specific surface area, high porosity, and tunable pore structure of MOFs materials. In this work, FeN/C-Zx catalysts were synthesized using FeSO4·7H2O, 1, 10-phenanthroline, and ZIFs as iron, nitrogen, and carbon precursors, respectively. The effect of using different ZIFs as carbon precursors on the ORR activity of FeN/C-Zx catalysts were investigated. The structure of the catalyst was characterized by X-ray diffraction, specific surface area and pore size distribution test, and transmission electron microscope. The catalytic activity of the catalyst for ORR was tested by linear scanning voltammetry. The results show that the FeN/C-Z8 catalyst exhibits the best ORR activity, a small Tafel slope (64.98 mV/dec) with a nearly four-electron reaction process, and a good stability with only 20 mV negative shift in half-wave potential after 25 000 cycles of accelerated degradation tests. The Fe3C compound, which can effectively improve the catalytic activity, present in the FeN/C-Z8 catalyst;the high specific surface area (550.09 m2/g) and pore volume (1.36 cm3/g), the abundant micropore and mesoporous structure, as well as the uniform distribution of transition metals on the ZIFs materials and the small catalyst particles size due to the volatilization of Zn2+ during the carbonization process, are the possible reasons to increase the ORR catalytic performance of FeN/C-Z8 catalyst.
Key words:  oxygen reduction reaction (ORR)    non-precious metal catalyst    zeolitic imidazolate frameworks (ZIFs)    FeN doping
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(21965006;22005072);中国科学院燃料电池及复合电能源重点实验室开放课题(KLFC201703)
通讯作者:  *田娟,贵州师范大学化学与材料科学学院副教授、硕士研究生导师。2002年7月毕业于武汉大学化学与分子科学学院,获应用化学学士学位;2008年11月毕业于中国科学院大连化学物理研究所,获物理化学专业博士学位;2009年2月至2013年7月分别于加拿大魁北克大学国立科学研究院能源材料及通信研究中心和美国俄亥俄州立大学从事博士后研修。主要从事质子交换膜燃料电池铂基贵金属、非贵金属电催化剂的研究,发表论文20余篇。tianjuan@gznu.edu.cn   
作者简介:  宋冬梅,2020年毕业于安徽省淮南师范学院,获得理学化学学士学位。现为贵州师范大学化学与材料科学学院硕士研究生,在田娟老师的指导下进行研究,目前主要研究领域为质子交换膜燃料电池非贵金属电催化剂。
引用本文:    
宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
SONG Dongmei, ZHENG Qiuyan, PAN Tingxian, HU Changgang, TONG Xin, TIAN Juan. Effect of ZIFs Materials on the Oxygen Reduction Performance of Fe/N/C Catalysts. Materials Reports, 2024, 38(10): 22100278-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100278  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22100278
1 Xiong M, He S R, Zhang Y, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(4), 19(in Chinese).
熊牡, 何仕荣, 张勇, 等. 重庆工商大学学报(自然科学版), 2023, 40(4), 19.
2 Stephens I E L, Bondarenko A S, Grønbjerg U, et al. Energy & Environmental Science, 2012, 5(5), 6744.
3 Li X, Liu X, Wang W, et al. Biosensors and Bioelectronics, 2014, 59, 221.
4 Peera S G, Lee T G, Sahu A K. Sustainable Energy & Fuels, 2019, 3(8), 1866.
5 Gouse P S, Kwon H J, Lee T G, et al. Ionics, 2020, 26(4), 1563.
6 Phan A, Doonan C J, Uribe-Romo F J, et al. Accounts of Chemical Research, 2010, 43(1), 58.
7 Park K S, Ni Z, Côté A P, et al. Proceedings of the National Academy of Sciences, 2006, 103(27), 10186.
8 Zhong J Q, He L J, Yang Q X, et al. ChemistrySelect, 2021, 6(6), 1271.
9 Xu X, Zhang X, Xia Z, et al. Journal of Energy Chemistry, 2021, 54, 579.
10 Lin L, Du X, Wang J, et al. Nanotechnology, 2021, 33(10), 105601.
11 Xie X, He C, Li B, et al. Nature Catalysis, 2020, 3(12), 1044.
12 Kong Z, Liu T, Hou K, et al. Journal of Materials Chemistry A, 2022, 10(6), 2826.
13 Guan Y, Li N, Li Y, et al. Nanoscale, 2020, 12(26), 14259.
14 Parkasha A. Journal of Porous Materials, 2020, 27(5), 1377.
15 Proietti E, Jaouen F, Lefèvre M, et al. Nature Communications, 2011, 2(1), 416.
16 Li G, Li J, Cui Q, et al. Journal of Solid State Electrochemistry, 2020, 24(10), 2427.
17 Deng Y, Dong Y, Wang G, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9699.
18 Han J, Meng X, Lu L, et al. Advanced Functional Materials, 2019, 29(41), 1808872.
19 Ma S, Goenaga G A, Call A V, et al. Chemistry-A European Journal, 2011, 17(7), 2063.
20 Guan B Y, Yu L, Lou X W. Advanced Science, 2017, 4(10), 1700247.
21 Lin X, Wang Y, Liu T, et al. ChemistrySelect, 2018, 3(17), 4831.
22 Ge F, Qiao Q, Chen X, et al. Frontiers of Chemical Science and Engineering, 2021, 15(5), 1206.
23 Sun T, Xu L, Wang D, et al. Nano Research, 2019, 12(9), 2067.
24 Zhang M, Yan F, Bai J, et al. Microporous and Mesoporous Materials, 2021, 312, 110627.
25 Lin Q, Shang C, Chen Z, et al. Materials Research Express, 2020, 7(8), 085002.
26 Pan T X, Zheng Q Y, Li M H, et al. Journal of Materials Engineering, 2022, 50(5), 122 (in Chinese).
潘廷仙, 郑秋燕, 李茂辉, 等. 材料工程, 2022, 50(5), 122.
27 Zheng Q Y, Yang Z, Li M H, et al. Journal of Materials Engineering, 2021, 49(6), 132 (in Chinese).
郑秋燕, 杨智, 李茂辉, 等. 材料工程, 2021, 49(6), 132.
28 Zheng Q Y, Shen Y Y, Yang Z, Journal of Functional Materials, 2019, 50(12), 12142 (in Chinese).
郑秋燕, 沈亚云, 杨智, 等. 功能材料, 2019, 50(12), 12142.
29 Hao M G, Dun R M, Su Y M, et al. Nanoscale, 2020, 12(28), 15115.
30 Jiang W J, Gu L, Li L, et al. Journal of the American Chemical Society, 2016, 138(10), 3570.
31 Wu T, Zhang H, Zhang X, et al. Physical Chemistry Chemical Physics, 2015, 17(41), 27527.
32 Wang R, Li J, Cai S, et al. ChemPlusChem, 2016, 81(7), 646.
33 Ren G, Lu X, Li Y, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 4118.
34 Qian Y, Liu Z, Zhang H, et al. ACS Applied Materials & Interfaces, 2016, 8(48), 32875.
35 Shah S S A, Peng L, Najam T, et al. Electrochimica Acta, 2017, 251, 498.
36 Zhang D, Xiang Q. Materials Letters, 2020, 278, 128411.
37 Hu C, Xu J, Lu Z, et al. International Journal of Hydrogen Energy, 2021, 46(63), 32149.
38 Tian P, Zang J, Dong L, et al. International Journal of Hydrogen Energy, 2021, 46(1), 543.
39 Wang X Y, Lin Z W, Jiao Y Q, et al. Nanomaterials, 2021, 11(8), 2106.
40 Ye Y, Li H, Cai F, et al. ACS Catalysis, 2017, 7(11), 7638.
41 Ma M, You S, Wang W, et al. ACS Applied Materials & Interfaces, 2016, 8(47), 32307.
42 Li C, He C, Sun F, et al. ACS Applied Nano Materials, 2018, 1(4), 1801.
43 Chen M, Jiang Y, Mei P, et al. Polymers, 2019, 11(5), 767.
44 Zhai X, Lin W, Liu J, et al. Journal of Electroanalytical Chemistry, 2020, 866, 114170.
45 Wang X X, Prabhakaran V, He Y, et al. Advanced Materials, 2019, 31(31), 1805126.
[1] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[2] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[3] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[4] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[5] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[6] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[7] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[8] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[9] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[10] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[11] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[12] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[13] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[14] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[15] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed