Abstract: Hydrogen peroxide (H2O2) is a versatile and environmental-friendly oxidant, which is widely used in chemical synthesis, wastewater treatment, and pulp/textile bleaching. Current industrial manufacturing of H2O2 is mainly based on an anthraquinone method, which has disadvantages such as high energy consumption, tedious process, and potential safety concern for its storage and transportation. Electrocatalytic H2O2 production through two-electron oxygen reduction reaction (2e-ORR) has recently emerged as an intriguing alternative, enabling on-site H2O2 generation according to practical demands. The efficiency of 2e-ORR directly depends on electrocatalysts’ activity, selectivity, and stability. This review would briefly introduce the ORR mechanism and performance evaluation methods of 2e-ORR catalysts. Then, an overview of the recent advance in precious metal and carbon-based electrocatalysts for 2e-ORR is provided, emphasizing structure optimization, compositional doping, active site regulation, and surface/interface design of these catalysts. Furthermore, the present challenges and critical issues to be solved in the future are prospected to guide further development toward the electrocatalytic synthesis of H2O2.
徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
XU Wenjie, LIU Dan, QU Deyu, LI Xi. Research Progress on Electrocatalytic Synthesis of Hydrogen Peroxide by Two-electron Oxygen Reduction. Materials Reports, 2023, 37(24): 22030010-12.
1 Fukuzumi S, Yamada Y, Karlin K D. Electrochimica Acta, 2012, 82, 493. 2 Wang K, Huang J, Chen H, et al. Chemical Communications, 2020, 56(81), 12109. 3 Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Nature Matertials, 2013, 12(12), 1137. 4 De Beco, P J C A S. Comptes Rendus de I’ Academie des Science, 1938, 207, 623. 5 Choi C H, Kwon H C, Yook S, et al. Journal of Physical Chemistry C, 2014, 118(51), 30063. 6 Xia C, Xia Y, Zhu P, et al. Science, 2019, 366(6462), 226. 7 Wei Z, Liang X A, Jg A, et al. Chemical Engineering Journal, 2021, 410, 128368 8 Ge X, Sumboja A, Wuu D, et al. ACS Catalysis, 2015, 5(8), 4643. 9 Wang N, Ma S, Zuo P, et al. Advanced Science, 2021, 8(15), 2100076. 10 Yang S, Verdaguer-Casadevall A, Arnarson L, et al. ACS Catalysis, 2018, 8(5), 4064. 11 Paulus U A, Schmidt T J, Gasteiger H A, et al. Journal of Electroanalytical Chemistry, 2001, 495(2), 134. 12 Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Nano Letters, 2014, 14(3), 1603. 13 Liu M, Pang Y, Zhang B, et al. Nature, 2016, 537(7620), 382. 14 Xia C, Kim J Y, Wang H. Nature Catalysis, 2020, 3(8), 605. 15 Sun Y Y, Sinev I, Ju W, et al. ACS Catalysis, 2018, 8(4), 2844. 16 Jung E, Shin H, Hooch-Antink W, et al. ACS Energy Letters 2020, 5(6), 1881. 17 Wang M, Zhang N, Feng Y, et al. Angewandte Chemie International Edition, 2020, 59(34), 14373. 18 Yamanaka I, Murayama T. Angewandte Chemie International Edition, 2008, 47(10), 1900. 19 Li W, Bonakdarpour A, Gyenge E, et al. ChemSusChem, 2013, 6(11), 2137. 20 Chen Z, Chen S, Siahrostami S. , et al. Reaction Chemistry & Enginee-ring, 2017, 2(2), 239. 21 Belhateche D, Symons J M. Journal American Water Works Association, 1991, 83(8), 70. 22 McBride R S. Journal of the Franklin Institute, 1912, 174(3), 328. 23 Baek J H, Gill T M, Abroshan H, et al. ACS Energy Letters, 2019, 4(3), 720. 24 Lu Y, Jiang Y, Gao X, et al. Chemical Communications, 2014, 50(62), 8464. 25 Jirkovsky J S, Panas I, Ahlberg E, et al. Journal of the American Chemical Society, 2011, 133(48), 19432. 26 Zheng Z, Ng Y H, Wang D W, et al. Advanced Materials, 2016, 28(45), 9949. 27 Chang Q, Zhang P, Mostaghimi A H B, et al. Nature Communications, 2020, 11(1), 2178. 28 Li H, Wen P, Itanze D S, et al. Nature Communications, 2020, 11(1), 3928. 29 Liu Y, Quan X, Fan X, et al. Angewandte Chemie International Edition, 2015, 54(23), 6837. 30 San-Roman D, Krishnamurthy D, Garg R, et al. ACS Catalysis, 2020, 10(3), 1993. 31 Hasanzadeh A, Khataee A, Zarei M, et al. Scientific Reports, 2019, 9(1), 13780. 32 Pham-Truong T N, Petenzi T, Ranjan C, et al. Carbon, 2018, 130, 544. 33 Pang Y Y, Wang K, Xie H, et al. ACS Catalysis, 2020, 10(14), 7434. 34 Lu Z Y, Chen G X, Siahrostami S, et al. Nature Catalysis, 2018, 1(2), 156. 35 Kim H W, Ross M B, Kornienko N, et al. Nature Catalysis, 2018, 1(4), 282. 36 Han G F, Li F, Zou W, et al. Nature Communications, 2020, 11(1), 2209. 37 Zhu J, Xiao X, Zheng K, et al. Carbon 2019, 153, 6. 38 Wang Y L, Li S S, Yang X H, et al. Journal of Materials Chemistry A, 2019, 7(37), 21329. 39 Sun Y, Li S, Jovanov Z P, et al. ChemSusChem, 2018, 11(19), 3388. 40 Fellinger T P, Hasche F, Strasser P, et al. Journal of the American Chemical Society, 2012, 134(9), 4072. 41 Li L, Tang C, Zheng Y, et al. Advanced Energy Materials, 2020, 10(21), 2000789. 42 Chen S, Chen Z, Siahrostami S, et al. Journal of the American Chemical Society, 2018, 140(25), 7851. 43 Zhao K, Su Y, Quan X, et al. Journal of Catalysis, 2018, 357, 118. 44 Zhang J Y, Zhang G, Jin S Y, et al. Carbon, 2020, 163, 154. 45 Sun Y Y, Li S, Paul B, et al. Journal of Electroanalytical Chemistry, 2021, 896, 115197. 46 Jia N, Yang T, Shi S F, et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(7), 2883. 47 Gao J J, Yang H B, Huang X, et al. Chem, 2020, 6(3), 658. 48 Jung E, Shin H, Lee B H, et al. Nature Materials, 2020, 19(4), 436. 49 Li B Q, Zhao C X, Liu J N, et al. Advanced Materials, 2019, 31(35), 1808173. 50 Suk M, Chung M W, Han M H, et al. Catalysis Today, 2021, 359, 99. 51 Li X, Tang S, Dou S, et al. Advanced Materials, 2022, 34(25), 2104891. 52 Zhang J, Zhang H, Cheng M, et al. Small, 2020, 16(15), 1902845. 53 Adić R R, Tripković A V, Marković N M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 150(1-2), 79. 54 Chen J, Ma Q, Zheng X, et al. Nature Communications, 2022, 13(1), 1. 55 Jin M, Liu W, Sun J, et al. Nano Research, 2022, 1, 6. 56 Lee J, Choi S W, Back S, et al. Applied Catalysis B:Environmental, 2022, 309, 121265. 57 Wang Z J, Lu Y Z, Yan Y, et al. Nano Energy, 2016, 30, 368. 58 Ueda A, Kato D, Sekioka N, et al. Carbon, 2009, 47(8), 1943. 59 Zhao Z, Li M, Zhang L, et al. Advanced Matertials, 2015, 27(43), 6834. 60 Gong K, Du F, Xia Z, et al. Science, 2009, 323(5915), 760. 61 Lobyntseva E, Kallio T, Alexeyeva N, et al. Electrochimica Acta, 2007, 52(25), 7262. 62 Han L, Sun Y Y, Li S, et al. ACS Catalysis, 2019, 9(2), 1283. 63 Colic V, Yang S, Revay Z, et al. Electrochimica Acta, 2018, 272, 192. 64 Iglesias D, Giuliani A, Melchionna M, et al. Chem, 2018, 4(1), 106. 65 Park J, Nabae Y, Hayakawa T, et al. ACS Catalysis, 2014, 4(10), 3749. 66 Liang J, Du X, Gibson C, et al. Advanced Matertials, 2013, 25(43), 6226. 67 Chung H T, Cullen D A, Higgins D, et al. Science, 2017, 357(6350), 479. 68 Zhao H W, Li L X, Liu Y Y, et al. Applied Surface Science, 2020, 504, 144438. 69 Liu Y, Li K X, Ge B C, et al. Electrochimica Acta, 2016, 214, 110. 70 Peng Q, Zhao H, Qian L, et al. Applied Catalysis B:Environmental, 2015, 174-175, 157. 71 Liang L, Zhou M H, Lu X Y, et al. Electrochimica Acta, 2019, 320, 134569. 72 Khataee A, Sajjadi S, Pouran S R, et al. Electrochimica Acta, 2017, 244, 38. 73 Zhang S, Li X, Zhou J, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(4), 1646. 74 Moraes A, Assumpção M H M T, Simões F C, et al. Electrocatalysis, 2015, 7(1), 60. 75 Zhou J, An X, Lan H, et al. Applied Surface Science, 2020, 509, 144875. 76 Zhang C, Huang N, Zhai Z, et al. Nanotechnology, 2021, 33(1), 015401. 77 Wang Z, Cao X, Ping J, et al. Nanoscale, 2015, 7(21), 9394. 78 Gines L, Mandal S, Ashek I A, et al. Nanoscale, 2017, 9(34), 12549. 79 Zhou Y, Chen G, Zhang J J. Journal of Materials Chemistry A, 2020, 8(40), 20849. 80 Sheng X, Daems N, Geboes B, et al. Applied Catalysis B:Environmental, 2015, 176-177, 212. 81 Wang X, Varela A S, Bergmann A, et al. ChemSusChem, 2017, 10(22), 4642. 82 Yamazaki S I, Yamada Y, Ioroi T, et al. Journal of Electroanalytical Chemistry, 2005, 576(2), 253. 83 Wu Y, Muthukrishnan A, Nagata S, et al. The Journal of Physical Chemistry C, 2019, 123(7), 4590. 84 Zhang Q, Luo F, Ling Y, et al. Journal of Materials Chemistry A, 2020, 8(17), 8430. 85 Akula S, Sahu A K. ACS Applied Materials Interfaces, 2020, 12(10), 11438. 86 Feng L Y, Liu Y J, Zhao J X. Journal of Power Sources, 2015, 287, 431. 87 Uosaki K, Elumalai G, Noguchi H, et al. Journal of the American Chemical Society, 2014, 136(18), 6542. 88 Li J Z, Chen M J, Cullen D A, et al. Nature Catalysis, 2018, 1(12), 935. 89 Sun Y, Silvioli L, Sahraie N R, et al. Journal of the American Chemical Society, 2019, 141(31), 12372. 90 Song X, Li N, Zhang H, et al. ACS Applied Matertials Interfaces, 2020, 12(15), 17519. 91 Wang X X, Cullen D A, Pan Y T, et al. Advanced Matertials, 2018, 30(11), 1706758. 92 Zhao H, Yuan Z Y. ChemSusChem, 2021, 14(7), 1616. 93 Liu W, Feng J, Yin R, et al. Chemical Engineering Journal, 2022, 430, 132990. 94 Wang F, Zhou Y, Lin S, et al. Nano Energy, 2020, 78, 105128. 95 Byeon A, Cho J, Kim J M, et al. Nanoscale Horizons, 2020, 5(5), 832.