Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22030010-12    https://doi.org/10.11896/cldb.22030010
  无机非金属及其复合材料 |
两电子氧还原电催化合成过氧化氢的研究进展
徐文杰, 刘丹*, 屈德宇, 李曦*
武汉理工大学化学化工与生命科学学院,武汉 430070
Research Progress on Electrocatalytic Synthesis of Hydrogen Peroxide by Two-electron Oxygen Reduction
XU Wenjie, LIU Dan*, QU Deyu, LI Xi*
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 18830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 过氧化氢(H2O2)是一种环境友好的通用氧化剂,被广泛应用于化学合成、废水处理以及纸浆和纺织品漂白等领域。当前工业大量合成H2O2主要采用蒽醌法,该方法能耗高,工艺步骤多,三废排放大且产物储运过程中存在安全隐患。利用电催化剂将氧气在阴极侧进行两电子氧还原反应(2e-ORR)可实现按需现场合成H2O2,是近年来广受关注的一种方法。电催化剂的活性、选择性和稳定性直接决定了2e-ORR的反应效率。本文简要介绍了2e-ORR机理及催化剂性能评价方法,主要综述了用于2e-ORR合成H2O2的贵金属基和碳基催化剂在结构优化、组成掺杂、活性位点调控和表/界面设计等方面的重要研究进展,在此基础上就电催化合成H2O2存在的挑战和未来需要解决的关键问题进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐文杰
刘丹
屈德宇
李曦
关键词:  过氧化氢  氧还原反应  电催化合成  催化剂    
Abstract: Hydrogen peroxide (H2O2) is a versatile and environmental-friendly oxidant, which is widely used in chemical synthesis, wastewater treatment, and pulp/textile bleaching. Current industrial manufacturing of H2O2 is mainly based on an anthraquinone method, which has disadvantages such as high energy consumption, tedious process, and potential safety concern for its storage and transportation. Electrocatalytic H2O2 production through two-electron oxygen reduction reaction (2e-ORR) has recently emerged as an intriguing alternative, enabling on-site H2O2 generation according to practical demands. The efficiency of 2e-ORR directly depends on electrocatalysts’ activity, selectivity, and stability. This review would briefly introduce the ORR mechanism and performance evaluation methods of 2e-ORR catalysts. Then, an overview of the recent advance in precious metal and carbon-based electrocatalysts for 2e-ORR is provided, emphasizing structure optimization, compositional doping, active site regulation, and surface/interface design of these catalysts. Furthermore, the present challenges and critical issues to be solved in the future are prospected to guide further development toward the electrocatalytic synthesis of H2O2.
Key words:  hydrogen peroxide    oxygen reduction reaction    electrocatalytic synthesis    catalyst
发布日期:  2023-12-19
ZTFLH:  O646  
基金资助: 国家自然科学基金(21401145)
通讯作者:  *刘丹,武汉理工大学化学化工与生命科学学院副教授、硕士研究生导师。2002年本科毕业于武汉理工大学化学系,2011年获武汉理工大学材料物理与化学博士学位。主要从事多孔材料、碳材料的合成方法学研究以及超级电容器、碱金属离子电池、锂硫电池、固态电池等储能器件及材料的研究,在Nano Energy、J. Mater. Chem. A、ACS Appl. Mater. Interfaces、J. Power Source、Carbon、J. Phys. Chem. C等期刊发表SCI研究论文80余篇。
李曦,武汉理工大学化学化工与生命科学学院副教授、硕士研究生导师。1989年本科毕业于武汉大学化学系,1992年获武汉大学材料物理与化学博士学位。主要从事电化学、功能高分子材料的研究,主持和参加了国家自然科学基金、973、科技部重大专项子课题、湖北省自然科学基金及武汉市晨光计划等多项科研项目;已发表科研论文100余篇,其中SCI收录90余篇;获湖北省科技进步一等奖和二等奖各1项。daniellliu@whut.edu.cn;chemlixi@whut.edu.cn   
作者简介:  徐文杰,2019年6月毕业于武汉理工大学,获得理学学士学位。现为武汉理工大学化学化工与生命科学学院硕士研究生,在刘丹副教授的指导下进行研究。目前主要研究领域为电催化氧还原。
引用本文:    
徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
XU Wenjie, LIU Dan, QU Deyu, LI Xi. Research Progress on Electrocatalytic Synthesis of Hydrogen Peroxide by Two-electron Oxygen Reduction. Materials Reports, 2023, 37(24): 22030010-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030010  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22030010
1 Fukuzumi S, Yamada Y, Karlin K D. Electrochimica Acta, 2012, 82, 493.
2 Wang K, Huang J, Chen H, et al. Chemical Communications, 2020, 56(81), 12109.
3 Siahrostami S, Verdaguer-Casadevall A, Karamad M, et al. Nature Matertials, 2013, 12(12), 1137.
4 De Beco, P J C A S. Comptes Rendus de I’ Academie des Science, 1938, 207, 623.
5 Choi C H, Kwon H C, Yook S, et al. Journal of Physical Chemistry C, 2014, 118(51), 30063.
6 Xia C, Xia Y, Zhu P, et al. Science, 2019, 366(6462), 226.
7 Wei Z, Liang X A, Jg A, et al. Chemical Engineering Journal, 2021, 410, 128368
8 Ge X, Sumboja A, Wuu D, et al. ACS Catalysis, 2015, 5(8), 4643.
9 Wang N, Ma S, Zuo P, et al. Advanced Science, 2021, 8(15), 2100076.
10 Yang S, Verdaguer-Casadevall A, Arnarson L, et al. ACS Catalysis, 2018, 8(5), 4064.
11 Paulus U A, Schmidt T J, Gasteiger H A, et al. Journal of Electroanalytical Chemistry, 2001, 495(2), 134.
12 Verdaguer-Casadevall A, Deiana D, Karamad M, et al. Nano Letters, 2014, 14(3), 1603.
13 Liu M, Pang Y, Zhang B, et al. Nature, 2016, 537(7620), 382.
14 Xia C, Kim J Y, Wang H. Nature Catalysis, 2020, 3(8), 605.
15 Sun Y Y, Sinev I, Ju W, et al. ACS Catalysis, 2018, 8(4), 2844.
16 Jung E, Shin H, Hooch-Antink W, et al. ACS Energy Letters 2020, 5(6), 1881.
17 Wang M, Zhang N, Feng Y, et al. Angewandte Chemie International Edition, 2020, 59(34), 14373.
18 Yamanaka I, Murayama T. Angewandte Chemie International Edition, 2008, 47(10), 1900.
19 Li W, Bonakdarpour A, Gyenge E, et al. ChemSusChem, 2013, 6(11), 2137.
20 Chen Z, Chen S, Siahrostami S. , et al. Reaction Chemistry & Enginee-ring, 2017, 2(2), 239.
21 Belhateche D, Symons J M. Journal American Water Works Association, 1991, 83(8), 70.
22 McBride R S. Journal of the Franklin Institute, 1912, 174(3), 328.
23 Baek J H, Gill T M, Abroshan H, et al. ACS Energy Letters, 2019, 4(3), 720.
24 Lu Y, Jiang Y, Gao X, et al. Chemical Communications, 2014, 50(62), 8464.
25 Jirkovsky J S, Panas I, Ahlberg E, et al. Journal of the American Chemical Society, 2011, 133(48), 19432.
26 Zheng Z, Ng Y H, Wang D W, et al. Advanced Materials, 2016, 28(45), 9949.
27 Chang Q, Zhang P, Mostaghimi A H B, et al. Nature Communications, 2020, 11(1), 2178.
28 Li H, Wen P, Itanze D S, et al. Nature Communications, 2020, 11(1), 3928.
29 Liu Y, Quan X, Fan X, et al. Angewandte Chemie International Edition, 2015, 54(23), 6837.
30 San-Roman D, Krishnamurthy D, Garg R, et al. ACS Catalysis, 2020, 10(3), 1993.
31 Hasanzadeh A, Khataee A, Zarei M, et al. Scientific Reports, 2019, 9(1), 13780.
32 Pham-Truong T N, Petenzi T, Ranjan C, et al. Carbon, 2018, 130, 544.
33 Pang Y Y, Wang K, Xie H, et al. ACS Catalysis, 2020, 10(14), 7434.
34 Lu Z Y, Chen G X, Siahrostami S, et al. Nature Catalysis, 2018, 1(2), 156.
35 Kim H W, Ross M B, Kornienko N, et al. Nature Catalysis, 2018, 1(4), 282.
36 Han G F, Li F, Zou W, et al. Nature Communications, 2020, 11(1), 2209.
37 Zhu J, Xiao X, Zheng K, et al. Carbon 2019, 153, 6.
38 Wang Y L, Li S S, Yang X H, et al. Journal of Materials Chemistry A, 2019, 7(37), 21329.
39 Sun Y, Li S, Jovanov Z P, et al. ChemSusChem, 2018, 11(19), 3388.
40 Fellinger T P, Hasche F, Strasser P, et al. Journal of the American Chemical Society, 2012, 134(9), 4072.
41 Li L, Tang C, Zheng Y, et al. Advanced Energy Materials, 2020, 10(21), 2000789.
42 Chen S, Chen Z, Siahrostami S, et al. Journal of the American Chemical Society, 2018, 140(25), 7851.
43 Zhao K, Su Y, Quan X, et al. Journal of Catalysis, 2018, 357, 118.
44 Zhang J Y, Zhang G, Jin S Y, et al. Carbon, 2020, 163, 154.
45 Sun Y Y, Li S, Paul B, et al. Journal of Electroanalytical Chemistry, 2021, 896, 115197.
46 Jia N, Yang T, Shi S F, et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(7), 2883.
47 Gao J J, Yang H B, Huang X, et al. Chem, 2020, 6(3), 658.
48 Jung E, Shin H, Lee B H, et al. Nature Materials, 2020, 19(4), 436.
49 Li B Q, Zhao C X, Liu J N, et al. Advanced Materials, 2019, 31(35), 1808173.
50 Suk M, Chung M W, Han M H, et al. Catalysis Today, 2021, 359, 99.
51 Li X, Tang S, Dou S, et al. Advanced Materials, 2022, 34(25), 2104891.
52 Zhang J, Zhang H, Cheng M, et al. Small, 2020, 16(15), 1902845.
53 Adžić R R, Tripković A V, Marković N M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 150(1-2), 79.
54 Chen J, Ma Q, Zheng X, et al. Nature Communications, 2022, 13(1), 1.
55 Jin M, Liu W, Sun J, et al. Nano Research, 2022, 1, 6.
56 Lee J, Choi S W, Back S, et al. Applied Catalysis B:Environmental, 2022, 309, 121265.
57 Wang Z J, Lu Y Z, Yan Y, et al. Nano Energy, 2016, 30, 368.
58 Ueda A, Kato D, Sekioka N, et al. Carbon, 2009, 47(8), 1943.
59 Zhao Z, Li M, Zhang L, et al. Advanced Matertials, 2015, 27(43), 6834.
60 Gong K, Du F, Xia Z, et al. Science, 2009, 323(5915), 760.
61 Lobyntseva E, Kallio T, Alexeyeva N, et al. Electrochimica Acta, 2007, 52(25), 7262.
62 Han L, Sun Y Y, Li S, et al. ACS Catalysis, 2019, 9(2), 1283.
63 Colic V, Yang S, Revay Z, et al. Electrochimica Acta, 2018, 272, 192.
64 Iglesias D, Giuliani A, Melchionna M, et al. Chem, 2018, 4(1), 106.
65 Park J, Nabae Y, Hayakawa T, et al. ACS Catalysis, 2014, 4(10), 3749.
66 Liang J, Du X, Gibson C, et al. Advanced Matertials, 2013, 25(43), 6226.
67 Chung H T, Cullen D A, Higgins D, et al. Science, 2017, 357(6350), 479.
68 Zhao H W, Li L X, Liu Y Y, et al. Applied Surface Science, 2020, 504, 144438.
69 Liu Y, Li K X, Ge B C, et al. Electrochimica Acta, 2016, 214, 110.
70 Peng Q, Zhao H, Qian L, et al. Applied Catalysis B:Environmental, 2015, 174-175, 157.
71 Liang L, Zhou M H, Lu X Y, et al. Electrochimica Acta, 2019, 320, 134569.
72 Khataee A, Sajjadi S, Pouran S R, et al. Electrochimica Acta, 2017, 244, 38.
73 Zhang S, Li X, Zhou J, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(4), 1646.
74 Moraes A, Assumpção M H M T, Simões F C, et al. Electrocatalysis, 2015, 7(1), 60.
75 Zhou J, An X, Lan H, et al. Applied Surface Science, 2020, 509, 144875.
76 Zhang C, Huang N, Zhai Z, et al. Nanotechnology, 2021, 33(1), 015401.
77 Wang Z, Cao X, Ping J, et al. Nanoscale, 2015, 7(21), 9394.
78 Gines L, Mandal S, Ashek I A, et al. Nanoscale, 2017, 9(34), 12549.
79 Zhou Y, Chen G, Zhang J J. Journal of Materials Chemistry A, 2020, 8(40), 20849.
80 Sheng X, Daems N, Geboes B, et al. Applied Catalysis B:Environmental, 2015, 176-177, 212.
81 Wang X, Varela A S, Bergmann A, et al. ChemSusChem, 2017, 10(22), 4642.
82 Yamazaki S I, Yamada Y, Ioroi T, et al. Journal of Electroanalytical Chemistry, 2005, 576(2), 253.
83 Wu Y, Muthukrishnan A, Nagata S, et al. The Journal of Physical Chemistry C, 2019, 123(7), 4590.
84 Zhang Q, Luo F, Ling Y, et al. Journal of Materials Chemistry A, 2020, 8(17), 8430.
85 Akula S, Sahu A K. ACS Applied Materials Interfaces, 2020, 12(10), 11438.
86 Feng L Y, Liu Y J, Zhao J X. Journal of Power Sources, 2015, 287, 431.
87 Uosaki K, Elumalai G, Noguchi H, et al. Journal of the American Chemical Society, 2014, 136(18), 6542.
88 Li J Z, Chen M J, Cullen D A, et al. Nature Catalysis, 2018, 1(12), 935.
89 Sun Y, Silvioli L, Sahraie N R, et al. Journal of the American Chemical Society, 2019, 141(31), 12372.
90 Song X, Li N, Zhang H, et al. ACS Applied Matertials Interfaces, 2020, 12(15), 17519.
91 Wang X X, Cullen D A, Pan Y T, et al. Advanced Matertials, 2018, 30(11), 1706758.
92 Zhao H, Yuan Z Y. ChemSusChem, 2021, 14(7), 1616.
93 Liu W, Feng J, Yin R, et al. Chemical Engineering Journal, 2022, 430, 132990.
94 Wang F, Zhou Y, Lin S, et al. Nano Energy, 2020, 78, 105128.
95 Byeon A, Cho J, Kim J M, et al. Nanoscale Horizons, 2020, 5(5), 832.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[4] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[5] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[8] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[9] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[10] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[11] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[12] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[13] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[14] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[15] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed