Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22010173-13    https://doi.org/10.11896/cldb.22010173
  无机非金属及其复合材料 |
锰基低温NH3-SCR催化剂脱除NOx的研究综述
梁李斯1,†,*, 马洪月1,†, 郭文龙1, 张宇2, 弥晗2, 张自恒3, 邢相栋3
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省黄金与资源重点实验室,西安 710055
3 陕西省冶金工程技术研究中心,西安 710055
A Review of Manganese Based Low Temperature NH3-SCR Catalysts for NOx Removal
LIANG Lisi1,†,*, MA Hongyue1,†, GUO Wenlong1, ZHANG Yu2, MI Han2, ZHANG Ziheng3, XING Xiangdong3
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Shaanxi Provincial Key Laboratory of Gold and Resources, Xi’an 710055, China
3 Shaanxi Metallurgical Engineering Technology Research Center, XI’an 710055, China
下载:  全 文 ( PDF ) ( 39189KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前工业上使用的氨选择性催化还原(NH3-SCR)脱硝催化剂存在一定的缺陷,如易中毒、稳定性差、反应温度高等,在使用中受到限制。因此,开发低温高效、稳定性好、抗中毒性好的催化剂成为当前的研究热点,锰基催化剂具有较高的催化活性,在脱硝领域有广阔的应用前景,研究者们对此进行了大量研究。本文基于锰基低温氨选择性催化剂去除氮氧化物的最新研究进展,介绍了从催化剂添加助剂、制备方法、载体以及催化剂形貌结构等因素对锰基催化剂NH3-SCR脱硝性能的影响,深入分析了锰基催化剂脱硝的反应机理(包括Eley-Rideal和Langmuir-Hinshelwood机理)以及催化剂中毒机理,并指出研发低温NH3-SCR脱硝效果好、抗中毒性能好的锰基催化剂是未来的主要研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁李斯
马洪月
郭文龙
张宇
弥晗
张自恒
邢相栋
关键词:  SCR  催化剂  脱硝  低温  反应机理    
Abstract: Due to the NH3-SCR (ammonia selective catalytic reduction) denitrification catalysts currently used in industry have certain defects, such as easy poisoning, poor stability and high reaction temperature, they are restricted in use. Therefore, the development of catalysts with high efficiency at low temperature, good stability and good resistance to neutrality has become a current research hotspot. Manganese-based catalysts have high catalytic activity and have broad application prospects in the denitrification field, and researchers have conducted a lot of research on them. In this paper, based on the latest research progress of manganese-based low-temperature ammonia selective catalysts for NOx removal, the effects of catalyst additive, preparation method, carrier and catalyst morphology structure on the denitrification performance of manganese-based catalysts for NH3-SCR are introduced. The reaction mechanism (including Eley-Rideal and Langmuir-Hinshelwood mechanisms) and catalyst poisoning mechanism, and pointed out that the development of manganese-based catalysts with good denitrification effect and poisoning resistance for low-temperature NH3-SCR is the main research direction in the future.
Key words:  SCR    catalyst    denitrification    low temperature    reaction mechanism
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  X51  
  TQ426  
基金资助: 陕西省教育厅重点实验室项目(Z202 00151)
通讯作者:  * 梁李斯,西安建筑科技大学冶金工程学院副教授、硕士研究生导师。2006年毕业于东北师范大学环境科学专业,获学士学位。2008年毕业于东北大学有色金属专业,获硕士学位。2011年东北大学有色金属专业博士毕业。研究方向为有色金属冶金、冶金节能环保与资源综合利用、泡沫金属与吸声材料。发表论文30余篇,出版专著1部,获得专利7项。   
作者简介:  †共同第一作者
马洪月,2019年7月毕业于西安建筑科技大学环境科学专业,获得学士学位。现为西安建筑科技大学冶金工程学院硕士研究生,在梁李斯副教授的指导下进行研究。目前主要研究方向为烟气中氮氧化物的处理。44406200@qq.com
引用本文:    
梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
LIANG Lisi, MA Hongyue, GUO Wenlong, ZHANG Yu, MI Han, ZHANG Ziheng, XING Xiangdong. A Review of Manganese Based Low Temperature NH3-SCR Catalysts for NOx Removal. Materials Reports, 2023, 37(22): 22010173-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010173  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22010173
1 Centi G, Ciambelli P, Perathoner S, et al. Catalysis Today, 2002, 75(1), 3.
2 Yang Y L. Energy Environmental Protection, 2017, 31(2), 31 (in Chinese).
杨延龙. 能源环境保护, 2017, 31(2), 31
3 Tong J X, Yuan X Z, Zeng G M. Journal of Anhui Agricultural Sciences, 2009, 37(34), 17007(in Chinese).
佟婧怡, 袁兴中, 曾光明. 安徽农业科学, 2009, 37(34), 17007.
4 Li L H, Liu J, Cao Y P. Fuel & Chemical Processes, 2015, 46(3), 42.
5 Busca G, Lietti L, Ramis G, et al. Applied Catalysis B: Environmental, 1998, 18(1), 1.
6 Fu M X, Li S F, Lu P, et al. Catalysis Science & Technology Cambridge, 2014, 4(12), 14.
7 Guo N. Preparation and denitrification performance of composite manganese based catalysts. Master's Thesis, Xi’an University of Architecture and Technology’China’2013(in Chinese).
郭娜. 复合型锰基催化剂的制备和脱硝性能研究. 硕士学位论文, 西安建筑科技大学, 2013.
8 Valanidou L, Theologides C, Zorpas A A. Applied Catalysis B:Environmental, 2011, 107(1), 164.
9 Liu C, Shi J W, Gao C, et al. Applied Catalysis A: General, 2016, 522, 54.
10 Zhang M, Liu Y J. Sichuan Chemical Industry, 2020, 23(2), 20.
张敏, 刘勇军. 四川化工, 2020, 23(2), 20.
11 Li L, Wang L S, Pan S W, et al. Chinese Journal of Catalysis, 2013, 34(6), 1087.
12 Wang X B, Duan R B, Liu W, et al. Applied Surface Science, 2020, 510, 145517.
13 Zhang X P, Shen B X, Wang K, et al. Journal of Industrial & Engineering Chemistry, 2013, 19(4), 1272.
14 Fang N J, Guo J X, Shu S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 277.
15 Zhou X M, Huang X Y, Xie A J, et al. Chemical Engineering Journal, 2017, 326, 1074.
16 Gao F Y, Tang X L, Yi H H, et al. Applied Surface Science, 2019, 466, 411.
17 Xiong S C, Peng Y, Wang D, et al. Chemical Engineering Journal, 2020, 387, 124090.
18 Xia F T, Song Z X, Liu X, et al. Research on Chemical Intermediates, 2018, 44(4), 2703.
19 Jiang H X, Wang J, Zhou J L, et al. Industrial & Engineering Chemistry Research, 2019, 58(4), 1760.
20 Gao F Y, Tang X L, Yi H H, et al. Journal of Environmental Sciences, 2020, 89, 145
21 Qiu C T, Lin T, Zhang Q L, et al. Chinese Journal of Catalysis, 2011, 32(7), 1227(in Chinese).
邱春天, 林涛, 张秋林, 等. 催化学报, 2011, 32(7), 1227.
22 Tang X F, Li J H, Wei L S, et al. Chinese Journal of Catalysis, 2008, 29(6), 531(in Chinese).
唐幸福, 李俊华, 魏丽斯, 等. 催化学报, 2008, 29(6), 531.
23 Liu J, Li X Y, Li R Y, et al. Applied Catalysis a General, 2018, 549, 289.
24 Fang D, He F, Xie J L. Journal of Energy Institute, 2018, 92(2), 319.
25 Fang D, He F, Liu X Q, et al. Applied Surface Science, 2018, 427, 45.
26 Hao Z F, Shen Z R, Li Y, et al. Angewandte Chemie International Edition, 2019, 58(19), 131.
27 Jiang B Q, Liu Y, Wu Z B. Journal of Hazardous Materials, 2009, 162(2), 1249.
28 Yao X J, Ma K L, Zou W X, et al. Chinese Journal of CatalysisF, 2017, 38(1), 146.
29 Chao P Y, Hsu C H, Lin H P. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 427.
30 Zhang Y P, Zhao X Y, Xu H T, et al. Journal of Colloid and Interface ScienceF, 2011, 361(1), 212.
31 Huang L, Hu X N, Yuan S, et al. Applied Catalysis B Environmental F, 2017, 203, 778.
32 Gu S C, Gui K T, Ren D D, et al. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1), 195.
33 Kapteijn F, Singoredjo L, Andreini A, et al. Applied Catalysis B: Environmental, 1994, 3(2), 173.
34 Huang J, Huang H, Liu L, et al. Molecular Catalysis, 2018, 446, 49.
35 Singoredjo L, Korver R, Kapteijn F, et al. Applied Catalysis B: Environmental, 2010, 1(4), 297.
36 Yu S H, Jiang N X, Zou W X, et al. Catalysis Communications, 2016, 84, 75.
37 Smirniotis P G, Sreekanth P M, Pena D A, et al. Industrial & Enginee-ring Chemistry Research, 2006, 45(19), 6436.
38 Zeng Y Q, Wu Z H, Guo L N, et al. Molecular CatalysisF, 2020, 488, 110916.
39 Li L L, Sun B W, Sun J F, et al. Catalysis CommunicationsF, 2017, 100, 98.
40 Shen B X, Wang Y Y, Wang F M, et al. Chemical Engineering JournalF, 2014, 236(15), 171.
41 Xiao H P, Li J, Jiang Y F, et al. Research of Environmental Science, 2021, 34(2), 272(in Chinese).
肖海平, 李建, 蒋炎飞, 等. 环境科学研究, 2021, 34(2), 272.
42 Huang Z B, Li C Q, Wang Z, et al. Journal of Fuel Chemistry and Technology, 2016, 44(11), 1388(in Chinese).
黄增斌, 李翠清, 王振, 等. 燃料化学学报, 2016, 44(11), 1388.
43 Prvaneh N P. Russian Journal of Applied Chemistry, 2016, 89(8), 1365.
44 Zhang S Q, Zhang C, Wang Q, et al. Industrial & Engineering Chemistry Research, 2019, 58(51), 22857.
45 Yan R, Lin S X, Li Y Y, et al. Journal of Hazardous Materials, 2020, 396, 122592.
46 Pourkhalil M, Moghaddam A Z, Rashidi A, et al. Catalysis Letters, 2013, 143(2), 184.
47 Pan S W, Luo H C, Li L, et al. Molecular Catalysis, 2013, 377, 154.
48 Tang X L, Hao J M, Yi H H, et al. China Environmental Science, 2007(6), 845(in Chinese).
唐晓龙, 郝吉明, 易红宏, 等. 中国环境科学, 2007(6), 845.
49 Chu Y H, Wang T Z, Yao Y, et al. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3), 127(in Chinese).
楚英豪, 王天泽, 姚远, 等. 四川大学学报(工程科学版), 2013, 45(3), 127.
50 Gu T, Gao F, Tang X, et al. Environmental Science and Pollution Research, 2019, 26(26), 27940.
51 Zhang Y B, Zheng Y Y, Wang X, et al. RSC Advances, 2015, 5(36), 28385.
52 Zhu D L. Experimental study on the synergistic desulphurisation and denitrification of activated carbon fibres. Master's Thesis, Huazhong University of Science and Technology, China, 2015(in Chinese), China, 2015(in Chinese).
朱德力. 活性炭纤维协同脱硫脱硝的试验研究. 硕士学位论文, 华中科技大学, 2015.
53 Shen B X, Shi Z L, Shi J W, et al. Chemical Engineering Progress, 2008, 27(1), 92 (in Chinese).
沈伯雄, 史展亮, 施建伟, 等. 化工进展, 2008, 27(1), 92.
54 Zhang Y B, Chen Y Z, Huang J H, et al. Current Nanoscience, 2021, 17(2), 298.
55 Zhang Y B, Zheng Y Y, Wang X, et al. Catalysis Communications, 2015, 62, 57.
56 Zhang T, Wang D D, Gao Z Y, et al. RSC Advances, 2016, 6(74), 70261.
57 Li G, Mao D S, Chao M X, et al. Journal of Rare Earths, 2021, 39(7), 805.
58 Ma X Y, Liang Y, Cui S P, et al. Materials Reports, 2018, 32(22), 5(in Chinese).
马晓宇, 梁雨, 崔素萍, 等. 材料导报, 2018, 32(22), 5.
59 Deng S C, Meng T T, Xu B L, et al. ACS Catalysis, 2016, 6(9), 5807.
60 Li S H, Huang B C, Yu C L, et al. Catalysis Communications, 2017, 98, 47.
61 Cai S X, Hu H, Li H R, et al. Nanoscale, 2016, 8(6), 3588.
62 Zhang L, Zhang D S, Zhang J P, et al. Nanoscale, 2013, 5(20), 9821.
63 Ma K. Study on the mechanism of SO2 poisoning over manganese based denitrification catalyst. Master's Thesis, Hefei University of Technology, China, 2019(in Chinese).
马康. 锰基脱硝催化剂SO2中毒机理研究. 硕士学位论文, 合肥工业大学, 2019.
64 Marbán G, Valdés-Solís T, Fuertes A B. Physical Chemistry Chemical Physics, 2004, 6(2), 453.
65 Fa N C, Sheng S, Xiang J, et al. Fuel, 2015, 139, 232.
66 Sun P, Guo R T, Liu S M, et al. Applied Catalysis A:General, 2017, 531, 129.
67 Yang G, Zhao H T, Luo X, et al. Applied Catalysis B:Environmental, 2019, 245, 743.
68 Gu S, Gui K, Ren D, et al. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(2), 741.
69 Li X, Li Q, Zhong L, et al. The Journal of Physical Chemistry C, 2019, 123, 25185.
70 Fang N J, Guo J X, Shu S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 277.
71 Pu Y J, YangL, Yao C, et al. Chemosphere, 2022, 293, 133465.
72 Wang T, Wan Z T, Yang X C, et al. Fuel Processing Technology, 2018, 169, 112.
73 Xie Z B, Song Y J, Liang J S, et al. Materials Reports, 2017, 31(11), 38 (in Chinese).
解智博, 宋艳军, 梁金生, 等. 材料导报, 2017, 31(11), 38.
74 Yang C, Cheng H, Huang B C. Chemical Industry and Engineering Progress, 2014, 33(4), 907(in Chinese).
杨超, 程华, 黄碧纯. 化工进展, 2014, 33(4), 907.
75 Tang H, Li H, Yang J Y, et al. Chemical Industry and Engineering Progress, 2018, 37(3), 822(in Chinese).
唐昊, 李慧, 杨江毅, 等. 化工进展, 2018, 37(3), 822.
76 LiJH, ChangHZ, MaL, et al. Catalysis Today, 2011, 175(1), 147.
77 Mosconi S, Lick I D, Carrascull A , et al. Catalysis Communications, 2007, 8(11), 1755.
78 Li Y, Wan Y, Li Y P, et al. ACS Applied Materials & Interfaces, 2016, 8(8), 5224.
79 Shi X K, Guo J X, Shen T, et al. Chemical Engineering Journal, 2021, 421, 129995.
80 Chao M X, Mao D S, Li G H, et al. Journal of Sol-Gel Science and Technology, 2020, 95, 332.
81 Wang Z Y, Guo R T, Shi X, et al. Chemical Engineering Journal, 2019, 381, 122753.
82 Li Y, Li Y P, Shi Q, et al. Journal of Sol Gel Science & Technology, 2017, 81, 576.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[4] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[5] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[6] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[7] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[8] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[9] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[10] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[11] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[12] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[13] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[14] 陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展[J]. 材料导报, 2023, 37(20): 22050128-16.
[15] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed