A Review of Manganese Based Low Temperature NH3-SCR Catalysts for NOx Removal
LIANG Lisi1,†,*, MA Hongyue1,†, GUO Wenlong1, ZHANG Yu2, MI Han2, ZHANG Ziheng3, XING Xiangdong3
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 Shaanxi Provincial Key Laboratory of Gold and Resources, Xi’an 710055, China 3 Shaanxi Metallurgical Engineering Technology Research Center, XI’an 710055, China
Abstract: Due to the NH3-SCR (ammonia selective catalytic reduction) denitrification catalysts currently used in industry have certain defects, such as easy poisoning, poor stability and high reaction temperature, they are restricted in use. Therefore, the development of catalysts with high efficiency at low temperature, good stability and good resistance to neutrality has become a current research hotspot. Manganese-based catalysts have high catalytic activity and have broad application prospects in the denitrification field, and researchers have conducted a lot of research on them. In this paper, based on the latest research progress of manganese-based low-temperature ammonia selective catalysts for NOx removal, the effects of catalyst additive, preparation method, carrier and catalyst morphology structure on the denitrification performance of manganese-based catalysts for NH3-SCR are introduced. The reaction mechanism (including Eley-Rideal and Langmuir-Hinshelwood mechanisms) and catalyst poisoning mechanism, and pointed out that the development of manganese-based catalysts with good denitrification effect and poisoning resistance for low-temperature NH3-SCR is the main research direction in the future.
1 Centi G, Ciambelli P, Perathoner S, et al. Catalysis Today, 2002, 75(1), 3. 2 Yang Y L. Energy Environmental Protection, 2017, 31(2), 31 (in Chinese). 杨延龙. 能源环境保护, 2017, 31(2), 31 3 Tong J X, Yuan X Z, Zeng G M. Journal of Anhui Agricultural Sciences, 2009, 37(34), 17007(in Chinese). 佟婧怡, 袁兴中, 曾光明. 安徽农业科学, 2009, 37(34), 17007. 4 Li L H, Liu J, Cao Y P. Fuel & Chemical Processes, 2015, 46(3), 42. 5 Busca G, Lietti L, Ramis G, et al. Applied Catalysis B: Environmental, 1998, 18(1), 1. 6 Fu M X, Li S F, Lu P, et al. Catalysis Science & Technology Cambridge, 2014, 4(12), 14. 7 Guo N. Preparation and denitrification performance of composite manganese based catalysts. Master's Thesis, Xi’an University of Architecture and Technology’China’2013(in Chinese). 郭娜. 复合型锰基催化剂的制备和脱硝性能研究. 硕士学位论文, 西安建筑科技大学, 2013. 8 Valanidou L, Theologides C, Zorpas A A. Applied Catalysis B:Environmental, 2011, 107(1), 164. 9 Liu C, Shi J W, Gao C, et al. Applied Catalysis A: General, 2016, 522, 54. 10 Zhang M, Liu Y J. Sichuan Chemical Industry, 2020, 23(2), 20. 张敏, 刘勇军. 四川化工, 2020, 23(2), 20. 11 Li L, Wang L S, Pan S W, et al. Chinese Journal of Catalysis, 2013, 34(6), 1087. 12 Wang X B, Duan R B, Liu W, et al. Applied Surface Science, 2020, 510, 145517. 13 Zhang X P, Shen B X, Wang K, et al. Journal of Industrial & Engineering Chemistry, 2013, 19(4), 1272. 14 Fang N J, Guo J X, Shu S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 277. 15 Zhou X M, Huang X Y, Xie A J, et al. Chemical Engineering Journal, 2017, 326, 1074. 16 Gao F Y, Tang X L, Yi H H, et al. Applied Surface Science, 2019, 466, 411. 17 Xiong S C, Peng Y, Wang D, et al. Chemical Engineering Journal, 2020, 387, 124090. 18 Xia F T, Song Z X, Liu X, et al. Research on Chemical Intermediates, 2018, 44(4), 2703. 19 Jiang H X, Wang J, Zhou J L, et al. Industrial & Engineering Chemistry Research, 2019, 58(4), 1760. 20 Gao F Y, Tang X L, Yi H H, et al. Journal of Environmental Sciences, 2020, 89, 145 21 Qiu C T, Lin T, Zhang Q L, et al. Chinese Journal of Catalysis, 2011, 32(7), 1227(in Chinese). 邱春天, 林涛, 张秋林, 等. 催化学报, 2011, 32(7), 1227. 22 Tang X F, Li J H, Wei L S, et al. Chinese Journal of Catalysis, 2008, 29(6), 531(in Chinese). 唐幸福, 李俊华, 魏丽斯, 等. 催化学报, 2008, 29(6), 531. 23 Liu J, Li X Y, Li R Y, et al. Applied Catalysis a General, 2018, 549, 289. 24 Fang D, He F, Xie J L. Journal of Energy Institute, 2018, 92(2), 319. 25 Fang D, He F, Liu X Q, et al. Applied Surface Science, 2018, 427, 45. 26 Hao Z F, Shen Z R, Li Y, et al. Angewandte Chemie International Edition, 2019, 58(19), 131. 27 Jiang B Q, Liu Y, Wu Z B. Journal of Hazardous Materials, 2009, 162(2), 1249. 28 Yao X J, Ma K L, Zou W X, et al. Chinese Journal of CatalysisF, 2017, 38(1), 146. 29 Chao P Y, Hsu C H, Lin H P. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 427. 30 Zhang Y P, Zhao X Y, Xu H T, et al. Journal of Colloid and Interface ScienceF, 2011, 361(1), 212. 31 Huang L, Hu X N, Yuan S, et al. Applied Catalysis B Environmental F, 2017, 203, 778. 32 Gu S C, Gui K T, Ren D D, et al. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1), 195. 33 Kapteijn F, Singoredjo L, Andreini A, et al. Applied Catalysis B: Environmental, 1994, 3(2), 173. 34 Huang J, Huang H, Liu L, et al. Molecular Catalysis, 2018, 446, 49. 35 Singoredjo L, Korver R, Kapteijn F, et al. Applied Catalysis B: Environmental, 2010, 1(4), 297. 36 Yu S H, Jiang N X, Zou W X, et al. Catalysis Communications, 2016, 84, 75. 37 Smirniotis P G, Sreekanth P M, Pena D A, et al. Industrial & Enginee-ring Chemistry Research, 2006, 45(19), 6436. 38 Zeng Y Q, Wu Z H, Guo L N, et al. Molecular CatalysisF, 2020, 488, 110916. 39 Li L L, Sun B W, Sun J F, et al. Catalysis CommunicationsF, 2017, 100, 98. 40 Shen B X, Wang Y Y, Wang F M, et al. Chemical Engineering JournalF, 2014, 236(15), 171. 41 Xiao H P, Li J, Jiang Y F, et al. Research of Environmental Science, 2021, 34(2), 272(in Chinese). 肖海平, 李建, 蒋炎飞, 等. 环境科学研究, 2021, 34(2), 272. 42 Huang Z B, Li C Q, Wang Z, et al. Journal of Fuel Chemistry and Technology, 2016, 44(11), 1388(in Chinese). 黄增斌, 李翠清, 王振, 等. 燃料化学学报, 2016, 44(11), 1388. 43 Prvaneh N P. Russian Journal of Applied Chemistry, 2016, 89(8), 1365. 44 Zhang S Q, Zhang C, Wang Q, et al. Industrial & Engineering Chemistry Research, 2019, 58(51), 22857. 45 Yan R, Lin S X, Li Y Y, et al. Journal of Hazardous Materials, 2020, 396, 122592. 46 Pourkhalil M, Moghaddam A Z, Rashidi A, et al. Catalysis Letters, 2013, 143(2), 184. 47 Pan S W, Luo H C, Li L, et al. Molecular Catalysis, 2013, 377, 154. 48 Tang X L, Hao J M, Yi H H, et al. China Environmental Science, 2007(6), 845(in Chinese). 唐晓龙, 郝吉明, 易红宏, 等. 中国环境科学, 2007(6), 845. 49 Chu Y H, Wang T Z, Yao Y, et al. Journal of Sichuan University (Engineering Science Edition), 2013, 45(3), 127(in Chinese). 楚英豪, 王天泽, 姚远, 等. 四川大学学报(工程科学版), 2013, 45(3), 127. 50 Gu T, Gao F, Tang X, et al. Environmental Science and Pollution Research, 2019, 26(26), 27940. 51 Zhang Y B, Zheng Y Y, Wang X, et al. RSC Advances, 2015, 5(36), 28385. 52 Zhu D L. Experimental study on the synergistic desulphurisation and denitrification of activated carbon fibres. Master's Thesis, Huazhong University of Science and Technology, China, 2015(in Chinese), China, 2015(in Chinese). 朱德力. 活性炭纤维协同脱硫脱硝的试验研究. 硕士学位论文, 华中科技大学, 2015. 53 Shen B X, Shi Z L, Shi J W, et al. Chemical Engineering Progress, 2008, 27(1), 92 (in Chinese). 沈伯雄, 史展亮, 施建伟, 等. 化工进展, 2008, 27(1), 92. 54 Zhang Y B, Chen Y Z, Huang J H, et al. Current Nanoscience, 2021, 17(2), 298. 55 Zhang Y B, Zheng Y Y, Wang X, et al. Catalysis Communications, 2015, 62, 57. 56 Zhang T, Wang D D, Gao Z Y, et al. RSC Advances, 2016, 6(74), 70261. 57 Li G, Mao D S, Chao M X, et al. Journal of Rare Earths, 2021, 39(7), 805. 58 Ma X Y, Liang Y, Cui S P, et al. Materials Reports, 2018, 32(22), 5(in Chinese). 马晓宇, 梁雨, 崔素萍, 等. 材料导报, 2018, 32(22), 5. 59 Deng S C, Meng T T, Xu B L, et al. ACS Catalysis, 2016, 6(9), 5807. 60 Li S H, Huang B C, Yu C L, et al. Catalysis Communications, 2017, 98, 47. 61 Cai S X, Hu H, Li H R, et al. Nanoscale, 2016, 8(6), 3588. 62 Zhang L, Zhang D S, Zhang J P, et al. Nanoscale, 2013, 5(20), 9821. 63 Ma K. Study on the mechanism of SO2 poisoning over manganese based denitrification catalyst. Master's Thesis, Hefei University of Technology, China, 2019(in Chinese). 马康. 锰基脱硝催化剂SO2中毒机理研究. 硕士学位论文, 合肥工业大学, 2019. 64 Marbán G, Valdés-Solís T, Fuertes A B. Physical Chemistry Chemical Physics, 2004, 6(2), 453. 65 Fa N C, Sheng S, Xiang J, et al. Fuel, 2015, 139, 232. 66 Sun P, Guo R T, Liu S M, et al. Applied Catalysis A:General, 2017, 531, 129. 67 Yang G, Zhao H T, Luo X, et al. Applied Catalysis B:Environmental, 2019, 245, 743. 68 Gu S, Gui K, Ren D, et al. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(2), 741. 69 Li X, Li Q, Zhong L, et al. The Journal of Physical Chemistry C, 2019, 123, 25185. 70 Fang N J, Guo J X, Shu S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 277. 71 Pu Y J, YangL, Yao C, et al. Chemosphere, 2022, 293, 133465. 72 Wang T, Wan Z T, Yang X C, et al. Fuel Processing Technology, 2018, 169, 112. 73 Xie Z B, Song Y J, Liang J S, et al. Materials Reports, 2017, 31(11), 38 (in Chinese). 解智博, 宋艳军, 梁金生, 等. 材料导报, 2017, 31(11), 38. 74 Yang C, Cheng H, Huang B C. Chemical Industry and Engineering Progress, 2014, 33(4), 907(in Chinese). 杨超, 程华, 黄碧纯. 化工进展, 2014, 33(4), 907. 75 Tang H, Li H, Yang J Y, et al. Chemical Industry and Engineering Progress, 2018, 37(3), 822(in Chinese). 唐昊, 李慧, 杨江毅, 等. 化工进展, 2018, 37(3), 822. 76 LiJH, ChangHZ, MaL, et al. Catalysis Today, 2011, 175(1), 147. 77 Mosconi S, Lick I D, Carrascull A , et al. Catalysis Communications, 2007, 8(11), 1755. 78 Li Y, Wan Y, Li Y P, et al. ACS Applied Materials & Interfaces, 2016, 8(8), 5224. 79 Shi X K, Guo J X, Shen T, et al. Chemical Engineering Journal, 2021, 421, 129995. 80 Chao M X, Mao D S, Li G H, et al. Journal of Sol-Gel Science and Technology, 2020, 95, 332. 81 Wang Z Y, Guo R T, Shi X, et al. Chemical Engineering Journal, 2019, 381, 122753. 82 Li Y, Li Y P, Shi Q, et al. Journal of Sol Gel Science & Technology, 2017, 81, 576.