Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22050128-16    https://doi.org/10.11896/cldb.22050128
  无机非金属及其复合材料 |
低温共烧低介电常数微波介质陶瓷的研究进展
陈国华1,2,*, 黄冰虹1
1 桂林电子科技大学材料科学与工程学院,广西 桂林 541004
2 桂林电子科技大学,广西电子信息材料构效关系重点实验室,广西 桂林 541004
Low Temperature Co-fired Microwave Dielectric Ceramics with Low Dielectric Constant: a Review
CHEN Guohua1,2,*, HUANG Binghong1
1 School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 6216KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球移动数据量的爆炸式增加和全球卫星定位系统(GPS)等其他无线通讯定位手段的飞速发展,微波介质陶瓷作为一种至关重要的介质材料,可以承担多种高频信号和微波信号,正朝着高频化和信号的高频可调性方向发展。当今大数据时代,电子器件的轻薄化、高性能和低损耗对微波介质陶瓷材料提出了更高的要求。低温共烧陶瓷(LTCC)技术以其优异的热、电性能和先进的制备工艺成为有源/无源元器件封装的主流,广泛地用于电子器件和电路封装。
实际应用中,对用于基板的微波电子器件而言,低介电常数可以有效地避免信号延迟,保证高效的传输速率,高的品质因数(Q×f ≥5 000 GHz)可以增加选频特性和器件工作的可靠性,近零谐振频率温度系数(τf)可以保障频率随温度变化的稳定性,低的烧结温度(Ts≤950 ℃)可以实现和低熔点、高电导率的金属共烧。因此,低介LTCC陶瓷成为当前研究的热点,极大促进微波介电材料的应用。
微波介质材料可分为陶瓷体系(碲酸盐、钒酸盐、钼酸盐、钨酸盐、硼酸盐和磷酸盐)、微晶玻璃体系(CaO-B2O3-SiO2、MgO-B2O3-SiO2、ZnO-B2O3、MgO-Al2O3-SiO2、Li2O-MgO-ZnO-B2O3-SiO2、CuO-B2O3-Li2O)和玻璃+陶瓷复合体系三大类。陶瓷体系一般采用固相法按照化学计量比进行制备。微晶玻璃是一种多晶材料,成分可调,微波介电性能优异,应用广泛。而玻璃+陶瓷复合体系是在低软化点玻璃基体中加入陶瓷填充剂制备出致密度高的微波介质陶瓷,陶瓷填充材料的选择取决于微电子器件的介电需求,主要用于改善微电子器件的介电、热学和力学性能。高性能LTCC材料的研发需要低温烧结介质材料与内电极材料的匹配共烧,从而提高低温烧结介质材料的微波性能和优化低温烧结介质材料的热膨胀系数与热导率。此外,低温烧结介质材料还应具有较好的机械强度和低的生产成本。
本文总结了低温共烧低介材料的概念和分类,聚焦于各类共烧陶瓷、微晶玻璃和玻璃+陶瓷复合体系的研究现状与性能特点,系统分析了低温低介共烧材料制备及应用面临的主要问题,展望了其在未来通信技术的应用前景,为今后低烧高性能微波介质材料的发展提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈国华
黄冰虹
关键词:  5G/6G通讯  微波介质材料  低温共烧陶瓷技术  低介电常数    
Abstract: With the explosive increase of global mobile data and the rapid development of global satellite positioning system (GPS) and other wireless communication positioning means, microwave dielectric ceramics, as vital dielectric materials, can bear a variety of high-frequency signals and microwave signals, and are developing towards high-frequency and signal high-frequency adjustability. Lightweight, high performance and low loss are higher requirements for microwave dielectric ceramic materials in the era of big data. Low temperature co-fired ceramic (LTCC) technology has become the mainstream of active/passive component packaging with excellent thermal and electrical properties as well as an advanced preparation process, which is widely used in electronic devices and circuit packaging.
In practice applications, for microwave electronic substrates, low permittivity effectively avoids signal delays and ensures efficient transmission rates. Materials with high quality factors (Q×f≥5 000 GHz) can increase frequency selectivity and reliability. And the near-zero resonant frequency temperature coefficient (τf) can guarantee the stability of the device operating at different temperatures. The low sintering temperature (≤950 ℃) enables co-firing with metals with low melting points and high conductivity. Therefore, low dielectric LTCC ceramics have become a current research hotspot, greatly promoting the application of microwave dielectric materials.
Microwave dielectric materials can be divided into ceramic systems (tellurite, vanadate, molybdate, tungstate, borate and phosphate, etc.), glass-ceramics (CaO-B2O3-SiO2,MgO-B2O3-SiO2,ZnO-B2O3,MgO-Al2O3-SiO2,Li2O-MgO-ZnO-B2O3-SiO2,CuO-B2O3-Li2O, etc.), and glass+ceramic composite systems. The ceramic system is generally prepared in a stoichiometric ratio by a solid phase method. Glass-ceramics is a polycrystalline material with adjustable composition and excellent microwave dielectric properties, which has been widely used. The high-density glass-ceramic composite system is prepared by adding a ceramic filler into a low softening point glass matrix, and the selection of the ceramic filler material depends on the dielectric requirement of the microelectronic device and is mainly used for improving the dielectric, thermal and mechanical properties. The research and development of high-performance LTCC materials need the matching co-firing of low-temperature sintered dielectric material and inner electrode material, improving the microwave performance of the low-temperature sintered dielectric material and optimizing the thermal expansion coefficient and thermal conductivity of the low-temperature sintered dielectric material. In addition, it is also considered that the low-temperature sintered dielectric material has good mechanical strength and low production cost.
This work summarizes the concept and classification of low temperature co-fired materials with low dielectric permittivity and focuses on the research status and performance characteristics of various types of LTCC ceramics, glass ceramics and glass+ceramic composite systems. In addition, the main problems faced in the preparation and application of low-temperature and low dielectric co-fired materials are analyzed, and the application prospect in future communication technology is discussed, which can provide a reference for the future development of low firing high-performance microwave dielectric materials.
Key words:  5G/6G wireless communication    microwave dielectric materials    low temperature co-fired ceramic technology    low dielectric constant
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(61865003)
通讯作者:  *陈国华,教授,硕士研究生/博士研究生导师。1986年华东理工大学无机材料系本科毕业,1991年华东理工大学无机材料系硕士毕业,2006年中南大学材料科学与工程学院博士毕业,2002年5月至今于桂林电子科技大学材料科学与工程学院/广西电子信息材料构效关系重点实验室从事无机功能材料的教学和科研工作,中国硅酸盐学会高级会员、中国硅酸盐学会特种玻璃分会理事、中国仪表功能材料学会电子元器件关键材料与技术专委会常委。近几年,主持和参与完成国家级科研项目5项、省部级和企业科研项目6项,在J.Mater.Chem.A、J.Mater.Sci.Technol.、J.Am.Ceram.Soc.、Ceram.Int.、《硅酸盐学报》等期刊以第一或通信作者发表学术论文150多篇,以第一作者获国家发明专利15件,获省级科技奖励2项。chengh@guet.edu.cn   
引用本文:    
陈国华, 黄冰虹. 低温共烧低介电常数微波介质陶瓷的研究进展[J]. 材料导报, 2023, 37(20): 22050128-16.
CHEN Guohua, HUANG Binghong. Low Temperature Co-fired Microwave Dielectric Ceramics with Low Dielectric Constant: a Review. Materials Reports, 2023, 37(20): 22050128-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050128  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22050128
1 Sebastian M T, Ubic R, Jantunen H. International Materials Reviews, 2015, 60(7), 392.
2 Park J H, Choi Y J, Park J H, et al. Materials Chemistry and Physics, 2004, 88(2-3), 308.
3 Sebastian M T, Wang H, Jantunen H. Current Opinion in Solid State and Materials Science, 2016, 20(3), 151.
4 Kim E S, Kim S H. Journal of Electroceramics, 2006, 17(2-4), 471.
5 Wang Y Y. Research on microwave properties of the(Zn1-xMgx)2SiO4-based ceramic sintered at low temperature. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012(in Chinese).
王莹莹. 低温烧结(Zn1-xMgx)2SiO4基陶瓷的微波介电性能研究. 硕士学位论文, 南京航空航天大学, 2012.
6 Dong X, Sun C L, Yang H Y, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(20), 17967.
7 Konishi Y. Proceedings of the IEEE, 1991, 79(6), 726.
8 Jiang D H, Chen J J, Lu B B, et al. Ceramics International, 2019, 45(7), 8233.
9 Kajfez D. Journal of the European Ceramic Society, 2001, 21(15), 2663.
10 Bosman A J, Havinga E E. Physical Review, 1963, 129(4), 1593.
11 Park H S, Yoon K H, Kim E S. Journal of the American Ceramic Society, 2001, 84(1), 99.
12 Hu M, Gu H, Chu X, et al. Journal of Applied Physics, 2008, 104(12), 124104.
13 Harrop P J. Journal of Materials Science, 1969, 4(4), 370.
14 Ohsato H, Tsunooka T, Kan A, et al. Key Engineering Materials, 2004, 269, 195.
15 Sebastian M T, Ubic R, Jantunen H. International Materials Reviews, 2015, 60(7), 392.
16 Guo J, Zhou D, Wang L, et al. Dalton Transactions, The Royal Society of Chemistry, 2013, 42(5), 1483.
17 Wang S F, Huang C Y, Liu Y L. Journal of the American Ceramic Society, 2010, 93(10), 3272.
18 Hu M Z, Fu Y, Luo C Y, et al. Journal of the American Ceramic Society, 2010, 93(10), 3354.
19 Surendran K P, Santha N, Mohanan P, et al. The European Physical Journal B, 2004, 41(3), 301.
20 George S, Sebastian M T, Raman S, et al. International Journal of Applied Ceramic Technology, 2011, 8(1), 172.
21 Xu J F, Chen Z N, Qing X M, et al. IEEE Transactions on Antennas and Propagation, 2011, 59(3), 826.
22 Ciosek P, Zawadzki K, Stadnik D, et al. Journal of Solid State Electrochemistry, 2009, 13(1), 129.
23 Zhang Y G, Wu X G. Advanced Materials Research, 2014, 906, 25.
24 Sasikala T S, Suma M N, Mohanan P, et al. Journal of Alloys and Compounds, 2008, 461(1-2), 555.
25 Kwon D K, Lanagan M T, Shrout T R. Materials Letters, 2007, 61(8-9), 1827.
26 Kim H T, Nahm S, Byun J D, et al. Journal of the American Ceramic Society, 2004, 82(12), 3476.
27 Hong T. Study on the synthesis and low temperature sintering characteristics of CaMoO4 Ceramics. Master’s Thesis, University of Electronic Science and Technology, China, 2019(in Chinese).
洪涛. CaMoO4陶瓷的合成及低温烧结特性研究. 硕士学位论文, 电子科技大学, 2019.
28 Guo H Z, Baker A, Guo J, et al. ACS Nano, 2016, 10(11), 10606.
29 Guo H Z, Guo J, Baker A, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20909.
30 Wang H, Du H L, Peng Z, et al. Ceramics International, 2004, 30(7), 1225.
31 Wang H, Peng Z, Du H L, et al. Ceramics International, 2004, 30(7), 1219.
32 Kjeldsen J, Rodrigues A C M, Mossin S, et al. The Journal of Physical Chemistry B, 2014, 118(51), 14942.
33 Wang Y, Zuo R Z, Chen Z, et al. Journal of the American Ceramic Society, 2015, 98(1), 1.
34 Li W, Fang L, Sun Y H, et al. Journal of Electronic Materials, 2017, 46(4), 1956.
35 Li W B, Xi H H, Zhou D. Ceramics International, 2015, 41(7), 9063.
36 Ding K F. Preparation of LiMVO4(M=Mg, Zn) materials. Master’s Thesis, Dalian University of Technology, China, 2018(in Chinese).
丁凯峰. LiMVO4(M=Mg, Zn)材料的制备. 硕士学位论文, 大连理工大学, 2018.
37 Joung M R, Kim J S, Song M E, et al. Journal of the American Ceramic Society, 2009, 92(7), 1621.
38 Joung M R, Kim J S, Song M E, et al. Journal of the American Ceramic Society, 2009, 92(12), 3092.
39 Joung M R, Kim J S, Song M E, et al. Journal of the American Ceramic Society, 2009, 92(9), 2151.
40 Fang L, Wei Z H, Su C X, et al. Ceramics International, 2014, 40(10, Part B), 16835.
41 Naveenraj R, Suresh E K, Johnson D, et al. European Journal of Inorganic Chemistry, 2019, 7.
42 Zhou Z Z, Zhang D, Xu J M, et al. Journal of Materials Engineering, 2009(11), 20(in Chinese).
周振泽, 张德, 徐建梅, 等. 材料工程, 2009(11), 20.
43 Umemura R, Ogawa H, Ohsato H, et al. Journal of the European Ceramic Society, 2005, 25(12), 2865.
44 Wang Y, Zuo R Z. Journal of the European Ceramic Society, 2016, 36(1), 247.
45 Huang C L, Chu T M, Tsai M H. Materials Science and Engineering: B, 2021, 268, 115114.
46 Umemura R, Ogawa H, Yokoi A, et al. Journal of Alloys and Compounds, 2006, 424(1), 388.
47 Umemura R, Ogawa H, Kan A. Journal of the European Ceramic Society, 2006, 26(10-11), 2063.
48 Dong J W, Xu J M, Zhang D, et al. Journal of the Chinese Ceramic Society, 2010, 38(3), 381(in Chinese).
董金文, 徐建梅, 张德, 等. 硅酸盐学报, 2010, 38(3), 381.
49 Ogawa H, Yokoi A, Umemura R, et al. Journal of the European Ceramic Society, 2007, 27(8), 3099.
50 Fang L, Su C X, Zhou H F, et al. Journal of the American Ceramic Society, 2013, 96(3), 688.
51 Su C X, Fang L, Wei Z H, et al. Ceramics International, 2014, 40(3), 5015.
52 Luo H, Fang W S, Fang L, et al. Ceramics International, 2016, 42(8), 10506.
53 Zhou H, Sun W, Liu X, et al. Ceramics International, 2019, 45(2, Part A), 2629.
54 Chen J Q, Tang Y, Xiang H C, et al. Journal of the European Ceramic Society, 2018, 38(14), 4670.
55 Xiang H C, Fang L, Jiang X W, et al. P. K. Davies. Journal of the American Ceramic Society, 2016, 99(2), 399.
56 Tang Y, Jiang X W, Xiang H C, et al. Ceramics International, 2017, 43(2), 2892.
57 Xiang H C, Fang L, Jiang X W, et al. Ceramics International, 2016, 42(2, Part B), 3701.
58 Xu M Y, Xiang H C, Fang L, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(16), 12342.
59 Yao G G, Liu P, Zhang H W. Journal of the American Ceramic Society, 2013, 96(6), 1691.
60 Yao G G, Liu P, Zhao X G, et al. Journal of the European Ceramic Society, 2014, 34(12), 2983.
61 Wang D, Xiang H C, Tang Y, et al. Ceramics International, 2016, 42(13), 15094.
62 Chen J Q, Li C C, Xiang H C, et al. Materials Research Bulletin, 2018, 100, 377.
63 Neelakantan U A, Kalathil S E, Ratheesh R. European Journal of Inorganic Chemistry, 2015, 2015(2), 305.
64 Yao G G, Ren Z Y, Liu P. Journal of Electroceramics, 2018, 40(2), 144.
65 Huang C L, Chiang P E, Hsu T H. Materials Science and Engineering: B, 2021, 273, 115438.
66 Dong Z W, Zheng Y, Cheng P, et al. Materials Letters, 2014, 131, 151.
67 Unnimaya A N, Suresh E K, Ratheesh R. Materials Research Bulletin, 2017, 88, 174.
68 Kalathil S E, Neelakantan U A, Ratheesh R. N. Alford. Journal of the American Ceramic Society, 2014, 97(5), 1530.
69 Yin C Z, Li C C, Yang G J, et al. Journal of the European Ceramic Society, 2020, 40(2), 386.
70 Yao G G, Li Y, Yan J X, et al. Ceramics International, 2021, 47(12), 17147.
71 Li J, Li C C, Wei Z H, et al. Journal of the American Ceramic Society, 2015, 98(3), 683.
72 Suresh E K, Unnimaya A N, Surjith A, et al. Ceramics International, 2013, 39(4), 3635.
73 Choi G K, Kim J R, Yoon S H, et al. Journal of the European Ceramic Society, 2007, 27(8-9), 3063.
74 Yoon S H, Kim D W, Cho S Y, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2051.
75 Guo J, Zhou D, Wang H, et al. Journal of Alloys and Compounds, 2011, 509(19), 5863.
76 Zhu H K, Dong Y, Gu H D, et al. Ceramics International, 2020, 46(10), 16119.
77 Joseph N, Varghese J, Teirikangas M, et al. Composites Part B: Engineering, 2018, 141, 214.
78 Zhang Q, Su H, Huang F Y, et al. Journal of the European Ceramic Society, 2021, 41(13), 6502.
79 Zhang Q, Xu L L, Tang X L, et al. Journal of Alloys and Compounds, 2021, 874, 159928.
80 Zhang Q, Su H, Zhang H W, et al. Journal of Materiomics, 2022, 8(2), 392.
81 Zhang Z, Su H, Tang X L, et al. Ceramics International, 2014, 40(1), 1613.
82 Zhou D, Randall C A, Wang H, et al. Journal of the American Ceramic Society, 2010, 93(4), 1096.
83 Zhou D, Randall C A, Pang L X, et al. Journal of the American Ceramic Society, 2011, 94(2), 348.
84 Xiao K, Li C C, Xiang H C, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(8), 6397.
85 Zhou D, Randall C A, Pang L X, et al. Journal of the American Ceramic Society, 2011, 94(3), 802.
86 Bian W J, Zhou G H, Dong Y, et al. Ceramics International, 2021, 47(5), 7081.
87 Lyu X Y, Li Z X, Jin J J, et al. Ceramics International, 2022, 48(12), 17225.
88 Zhou H F, Gong J Z, Xu J G, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(6), 6389.
89 Tseng C F, Hsu H C, Chen P H. Journal of Alloys and Compounds, 2018, 764, 840.
90 Zhou D, Pang L X, Wang D W, et al. Journal of the European Ceramic Society, 2019, 39(7), 2374.
91 Liu W Q, Zuo R Z. Journal of the European Ceramic Society, 2018, 38(1), 339.
92 Xing C F, Wu B, Bao J, et al. Ceramics International, 2019, 45(17), 22207.
93 Tao B J, Xing C F, Wang W F, et al. Ceramics International, 2019, 45(18), 24675.
94 Zheng J J, Xing C F, Yang Y K, et al. Journal of Alloys and Compounds, 2020, 826, 153893.
95 Yuan X F, Xue X, Jin F, et al. Journal of the European Ceramic Society, 2019, 39(14), 4156.
96 Zhou H F, Tan X H, Huang J, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(15), 11439.
97 Zhang G, Guo J, He L, et al. Journal of the American Ceramic Society, 2014, 97(1), 241.
98 Zhang G Q, Wang H, Guo J, et al. Journal of the American Ceramic Society, 2015, 98(2), 528.
99 Yuan X F, Zhang G Q, Wang H. Journal of the European Ceramic Society, 2018, 38(15), 4967.
100 Huang C L, Huang J L, Hsu T H. Materials Research Bulletin, 2021, 141, 111355.
101 Ma X M, Du J L, Lu S, et al. Journal of Alloys and Compounds, 2021, 888, 161540.
102 Došler U, Kržmanc M M, Suvorov D. Journal of the European Ceramic Society, 2010, 30(2), 413.
103 Wu X G, Wang H, Chen Y H, et al. D. Suvorov. Journal of the American Ceramic Society, 2012, 95(6), 1793.
104 Liu Y P, Wang Y N, Li Y M, et al. Ceramics International, 2016, 42(5), 6475.
105 Pang L X, Zhou D, Li W B, et al. Journal of the European Ceramic Society, 2017, 37(9), 3073.
106 Ding G A, Liu F, Qu J J, et al. Ceramics International, 2021, 47(18), 26400.
107 Chang S Y, Pai H F, Tseng C F, et al. Journal of Alloys and Compounds, 2017, 698, 814.
108 Zhou D, Pang L X, Wang D W, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 11138.
109 Zhong M F, Tang X L, Li Y X, et al. Ceramics International, 2020, 46(11), 18667.
110 Yang H M, Zheng Y, Lu X P, et al. Ceramics International, 2021, 47(21), 30980.
111 Gu Y J, Lei L W, Huang J L, et al. Journal of the European Ceramic Society, 2019, 39(4), 1137.
112 Yang H C, Zhang S R, Wen Q Y, et al. Journal of the European Ceramic Society, 2021, 41(4), 2596.
113 Wang K G, Yin T T, Zhou H F, et al. Journal of the European Ceramic Society, 2020, 40(2), 381.
114 Zhou H F, Tan X H, Liu X B, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(21), 18486.
115 Ohashi M, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2005, 25(12), 2877.
116 Bao J, Du J L, Liu L T, et al. Ceramics International, 2022, 48(1), 784.
117 Thomas D, Sebastian M T. Journal of the American Ceramic Society, 2010, 93(11), 3828.
118 Shi F, Xiao E C. Materials Chemistry and Physics, 2021, 259, 124139.
119 Thomas D, Sebastian M T. Journal of the European Ceramic Society, 2012, 32(10), 2359.
120 Dong Z W, Zheng Y, Cheng P, et al. Ceramics International, 2014, 40(8, Part B), 12983.
121 Dong Z W, Zheng Y, Cheng P, et al. Ceramics International, 2014, 40(9), 14865.
122 Zhang P, Sun K X, Wu S X, et al. Materials Letters, 2019, 255, 126565.
123 Peng R, Li Y X, Yu G L, et al. Journal of Electronic Materials, 2018, 47(12), 7281.
124 Peng R, Lu Y C, Tao Z H, et al. Ceramics International, 2020, 46(8, Part A), 11021.
125 Peng R, Li Y X, Su H, et al. Journal of Materials Research and Technology, 2020, 9(3), 4994.
126 Bian J, Kim D W, Hong K S. Materials Research Bulletin, 2005, 40(12), 2120.
127 Xia C C, Chen G H, Yuan C L, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(18), 13970.
128 Xia C C, Jiang D H, Chen G H, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(16), 12026.
129 Zhang P, Wu S X, Xiao M. Journal of the European Ceramic Society, 2018, 38(13), 4433.
130 Park I H, Kim B S, Kim K Y, et al. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 8), 4956.
131 Ohsato H, Tsunooka T, Sugiyama T, et al. Journal of Electroceramics, 2006, 17(2), 445.
132 Tsunooka T, Androu M, Higashida Y, et al. Journal of the European Ceramic Society, 2003, 23(14), 2573.
133 Song M E, Kim J S, Joung M R, et al. Journal of the American Ceramic Society, 2008, 91(8), 2747.
134 Sugiyama T, Tsunooka T, Kakimoto K, et al. Journal of the European Ceramic Society, 2006, 26(10-11), 2097.
135 Li J, Su H K, Sun Y H, et al. Ceramics International, 2021, 47(11), 15039.
136 Lai Y M, Hong C Y, Jin L C, et al. Ceramics International, 2017, 43(18), 16167.
137 Guo Y P, Ohsato H, Kakimoto K. Journal of the European Ceramic Society, 2006, 26(10-11), 1827.
138 Nguyen N H, Lim J B, Nahm S, et al. Journal of the American Ceramic Society, 2007, 90(10), 3127.
139 Kim J S, Nguyen N H, Lim J B, et al. Journal of the American Ceramic Society, 2008, 91(2), 671.
140 Kim J S, Song M E, Joung M R, et al. Journal of the American Ceramic Society, 2008, 91(12), 4133.
141 Zhong M F, Su H, Jing X L, et al. Ceramics International, 2020, 46(9), 13095.
142 Joseph T, Sebastian M T, Jantunen H, et al. International Journal of Applied Ceramic Technology, 2011, 8(4), 854.
143 Zhang Q L, Yang H, Sun H P. Journal of the European Ceramic Society, 2008, 28(3), 605.
144 Li L, Hong W B, Chen G Y, et al. Journal of Alloys and Compounds, 2019, 774, 706.
145 Yokoi A, Ogawa H, Kan A, et al. Journal of the European Ceramic Society, 2005, 25(12), 2871.
146 Yao G G, Liu P. Physica B: Condensed Matter, 2010, 405(2), 547.
147 Chen K, Zheng Y, Dong Z W, et al. Materials Reports, 2017, 31(S2), 115(in Chinese).
陈康, 郑勇, 董作为, 等. 材料导报, 2017, 31(S2), 115.
148 Kim D W, Ko K H, Hong K S. Journal of the American Ceramic Society, 2001, 84(6), 1286.
149 Pullar R C, Lai C, Azough F, et al. Journal of the European Ceramic Society, 2006, 26(10), 1943.
150 Zhou D, Wang H, Pang L X, et al. Journal of the American Ceramic Society, 2008, 91(12), 4115.
151 Bian J J, Wu J Y, Wang L. Journal of the European Ceramic Society, 2012, 32(6), 1251.
152 Zhou H, Wang W, Chen X, et al. Ceramics International, 2014, 40(1, Part B), 2103.
153 Gu F F, Chen G H, Li X Q, et al. Materials Chemistry and Physics, 2015, 167, 354.
154 Chu X, Jiang J, Wang J Z, et al. Ceramics International, 2021, 47(3), 4344.
155 Kan A, Ogawa H, Yokoi A, et al. Journal of the European Ceramic Society, 2007, 27(8), 2977.
156 Su W A, Liu P, Bian X B. Electronic Components and Materials, 2005(8), 11(in Chinese).
苏未安, 刘鹏, 边小兵. 电子元件与材料, 2005(8), 11.
157 Wu Y, Su L N, Liang H R, et al. Journal of Shaanxi Normal University(Natural Science Edition), 2011, 39(3), 41(in Chinese).
吴怡, 苏丽娜, 梁海荣, 等. 陕西师范大学学报(自然科学版), 2011, 39(3), 41.
158 Yao G G. Low temperature sintering of low dielectric constant microwave dielectric ceramics. Ph.D. Thesis, Shaanxi Normal University, China, 2013(in Chinese).
姚国光. 低温烧结低介电常数微波介质陶瓷研究. 博士学位论文, 陕西师范大学, 2013.
159 Zhang C, Chen Y, Li X, et al. Journal of Materiomics, 2021, 7(3), 478.
160 Kan A, Ogawa H, Moriyama T. Journal of Materials Research, 2012, 27(6), 915.
161 Lu N, He G, Yang Z C, et al. Scripta Materialia, 2020, 174, 91.
162 Weng Z Z, Han Z Y, Xiao F, et al. Ceramics International, 2018, 44(12), 14145.
163 Hong T, Hu Y D, Bao S X, et al. Journal of Electronic Materials, 2019, 48(2), 972.
164 Xi J, Shang F, Liu F, et al. Ceramics International, 2020, 46(11), 19650.
165 Zhan Y, Li L X, Du M K. Ceramics International, 2021, 47(19), 27462.
166 Deng Y, Yao P, Li B. Materials Letters, 2021, 285, 129125.
167 Zuo H Z, Tang X L, Zhang H W, et al. Ceramics International, 2017, 43(12), 8951.
168 Zhou Z H, Su H, Tang X L, et al. Ceramics International, 2016, 42(9), 11161.
169 Wang M X, Zhong C W, Qin T Y, et al. Ceramics International, 2020, 46(8), 12088.
170 Du X, Su H, Zhang H, et al. Ceramics International, 2017, 43(10), 7636.
171 Dou G, Guo M, Li Y X, et al. Journal of Materials Science: Materials in Electronics, 2015, 26(6), 4207.
172 Zhang S, Su H, Zhang H W, et al. Ceramics International, 2016, 42(14), 15242.
173 Lan X K, Zou Z Y, Lu W Z, et al. Ceramics International, 2016, 42(15), 17731.
174 Liu C, Zhang H W, Wang G, et al. Materials Research Bulletin, 2017, 93, 16.
175 Varghese J, Gopinath S, Sebastian M T. Materials Chemistry and Physics, 2013, 137(3), 811.
176 Zhang P, Liu L, Zhao Y G, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(8), 5802.
177 Zhang P, Xie H, Zhao Y G, et al. Journal of Alloys and Compounds, 2017, 690, 688.
178 Wang Y, Zuo R Z, Zhang J, et al. Journal of Materials Science: Materials in Electronics, 2015, 26(7), 4963.
179 Wang H Y, Su H, Lai Y M, et al. Journal of Materials Science: Materials in Electronics, 2017, 28(19), 14190.
180 Tummala R R. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15(4), 6.
181 Qing Z J, Li B, Li H, et al. Journal of Materials Science: Materials in Electronics, 2014, 25(5), 2149.
182 Li B, Wang S L, Fang Y. Journal of Alloys and Compounds, 2017, 693, 9.
183 Xia G B, He L T, Yang D. Journal of Alloys and Compounds, 2012, 531, 70.
184 Ren H S. Study on B2O3-La2O3-MgO-TiO2 Glass-ceramics Based LTCC Materials. Ph. D. Thesis, University of Chinese Academy of Sciences(Shanghai Institute of Ceramics Chinese Academy of Sciences), China, 2018(in Chinese).
任海深. B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究. 博士学位论文, 中国科学院大学(中国科学院上海硅酸盐研究所), 2018.
185 Chang C R, Jean J H. Journal of the American Ceramic Society, 1999, 82(7), 1725.
186 Wang S F, Wang Y R, Hsu Y F, et al. Journal of Alloys and Compounds, 2010, 498(2), 211.
187 Wei P F, Yang X L, Hao L Y, et al. Electronic Components and Materials, 2013, 32(4), 6(in Chinese).
韦鹏飞, 杨晓莉, 郝凌云, 等. 电子元件与材料, 2013, 32(4), 6.
188 He D F, Gao C. Ceramics International, 2018, 44(14), 16246.
189 Zhu H Y, Fu R L, Agathopoulos S, et al. Ceramics International, 2018, 44(9), 10147.
190 Došler U, Kržmanc M M, Suvorov D. Ceramics International, 2012, 38(2), 1019.
191 Yu H T, Ju K, Wang K M. Journal of the American Ceramic Society, 2014, 97(3), 704.
192 Yu H T, Liu J S, Zeng M S, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(7), 7109.
193 Xie L S, Zhong C W, Fang Z X, et al. Journal of the Ceramic Society of Japan, 2018, 126(3), 163.
194 Chen G H, Liu X Y. Journal of Alloys and Compounds, 2007, 431(1-2), 282.
195 Ma M S, Fu Z Q, Liu Z F, et al. Ceramics International, 2017, 43, S292.
196 Xi J, Lu B B, Chen J J, et al. Journal of Non-Crystalline Solids, 2019, 521, 119527.
197 Jiang D H, Chen J J, Lu B B, et al. Journal of Materials Science: Materials in Electronics, 2018, 29(21), 18426.
198 Lu B B, Huang J, Jiang D H, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(20), 18599.
199 Zitani M K, Ebadzadeh T, Banijamali S, et al. Journal of Non-Crystalline Solids, 2018, 487, 65.
200 Chen G Y, Ma M S, Wei A Q, et al. Ceramics International, 2019, 45(16), 19689.
201 Imanaka Y, Yamazaki K, Aoki S, et al. Journal of the Ceramic Society of Japan, 2010, 97(1123), 309.
202 Wang H J, Bocker C, Li B T, et al. Solid State Sciences, 2017, 70, 6.
203 He D F, Zhong H, Gao C. Journal of Alloys and Compounds, 2019, 799, 50.
204 Han J, Xiang Y, Yao Z Q, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(6), 5902.
205 Hsiang H I, Mei L T, Yang S W, et al. Ceramics International, 2011, 37(7), 2453.
206 Hsiang H I, Yung S W, Wang C C. Ceramics International, 2014, 40(10), 15807.
207 Induja I J, Sebastian M T. Journal of the American Ceramic Society, 2017, 100(6), 2632.
208 Luo X F, Ren L C, Xia Y S, et al. Ceramics International, 2017, 43(9), 6791.
209 Ren L, Zhang M, Zhou H. Ceramics International, 2020, 46(16), 25979.
210 Xi J, Chen G H, Liu F, et al. Ceramics International, 2019, 45(18), 24431.
211 Shang Y, Zhong C W, Xiong H J, et al. Ceramics International, 2019, 45(11), 13711.
212 Qin T Y, Zhong C W, Tang B, et al. Journal of the European Ceramic Society, 2021, 41(2), 1342.
213 Xiang L T, Zhong C W, Qin T Y, et al. Ceramics International, 2021, 47(20), 28904.
214 Wang F, Lou Y H, Li Z J, et al. Ceramics International, 2021, 47(7), 9955.
215 Chen X Y, Wang F L, Zhang W J. Journal of Materials Science: Materials in Electronics, 2019, 30(3), 3098.
216 Hsiang H I, Yung S W, Wang C C. Materials Research Bulletin, 2014, 60, 730.
217 Li B, Long Q Y, Duan D N. Journal of Materials Science: Materials in Electronics, 2016, 27(3), 2824.
218 Liu J Z, Yao Z H, Xu N X, et al. Key Engineering Materials, 2016, 697, 253.
219 Ren H S, Dang M Z, Wang H J, et al. Materials Letters, 2018, 210, 113.
220 Ju K, Yu H T, Ye L, et al. Journal of the American Ceramic Society, 2013, 96(11), 3563.
221 Li B, Li W, Zheng J G. Journal of Alloys and Compounds, 2017, 725, 1091.
222 Li B, Duan D N, Long Q Y. Journal of Materials Science: Materials in Electronics, 2016, 27(7), 7240.
223 Wang F L, Zhang W J, Chen X Y, et al. Ceramics International, 2019, 45(6), 7203.
224 Ebrahimi F, Nemati A, Banijamali S. Journal of Alloys and Compounds, 2021, 882, 160722.
225 Li B, Tang B, Xu M J. Journal of Electronic Materials, 2015, 44(10), 3849.
226 Li B, Bian H B, Jing K. Materials Letters, 2019, 234, 302.
227 Keshavarz M, Ebadzadeh T, Banijamali S. Ceramics International, 2017, 43(12), 9259.
228 Wang F L, Zhang W J, Chen X Y, et al. Journal of the European Ceramic Society, 2020, 40(6), 2382.
229 Lv Y Y, Zhang L, Yang S Q, et al. Ceramics International, 2021, 47(9), 13035.
[1] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[2] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed