Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040399-16    https://doi.org/10.11896/cldb.22040399
  高分子与聚合物基复合材料 |
道路沥青挥发性有机化合物减排材料的研究进展
常郗文1, 龙永双1, 仪明伟1,2, 王晨3, 肖月1,4,*
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 中公高科养护科技股份有限公司,北京 100095
3 代尔夫特理工大学土木工程与地球科学学院,荷兰代尔夫特 2628CN
4 长安大学材料科学与工程学院,西安 710061
Research Progress of Emission Reduction Materials for Volatile Organic Compounds Reduction in Asphalt Pavement Construction
CHANG Xiwen1, LONG Yongshuang1, YI Mingwei1,2, WANG Chen3, XIAO Yue1,4,*
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 RoadMainT Co., Ltd., Beijing 100095, China
3 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628CN, the Netherlands
4 School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
下载:  全 文 ( PDF ) ( 9462KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青路面施工时,由于沥青自身复杂有机物的特点,受热会导致沥青挥发性有机化合物(Volatile organic compounds,VOCs)释放加剧。沥青VOCs的挥发,不仅对环境造成不可逆的危害,也对施工人员的健康构成威胁。道路建筑领域的研究者基于沥青VOCs的释放机理,开展了各类减排技术和减排材料研究,但是由于减排方法和减排效果量化标准的差异,尚未有研究对沥青VOCs减排材料进行系统归纳和全面分析。本文概括了当前国内外沥青VOCs减排研究现状,总结了减排技术的发展历程及以抑制剂、温拌剂和阻燃剂为主的各类减排材料的沥青VOCs减排机理。同时,综合评述了不同减排材料的减排效果,归纳了沥青VOCs高效减排技术的改进趋势和发展沥青VOCs新型减排材料的研究方向,以期实现沥青绿色低排放施工。最后,围绕沥青VOCs减排的环保主题,对未来沥青VOCs全生命周期排放机制和高效复合减排材料的可行性研发提出了展望,以支撑当前社会发展对绿色交通的迫切需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常郗文
龙永双
仪明伟
王晨
肖月
关键词:  道路沥青材料  挥发性有机化合物  VOCs减排  抑制剂  温拌剂  阻燃剂    
Abstract: Due to the complex organic properties of asphalt materials, the heating process during asphalt pavement construction will lead to the release of asphalt VOCs. Asphalt VOCs volatilization will cause irreversible harm to both the environment and health of construction workers. Researchers in the field of road construction have carried out extensive research on various emission reduction materials and technologies based on release mechanism of asphalt VOCs. There are no comprehensive research and intuitive comparison on emission reduction materials due to the differences between quantitative standards for emission reduction effects. This paper summarizes the current research status of asphalt VOCs emission reduction, including the development history of emission reduction technology and reduction mechanism of various asphalt VOCs emission reduction materials mainly based on inhibitors, warm mixing agents and flame retardants. In addition, the emission reduction effects of diffe-rent emission reduction materials are compared and the improvement trend research direction of new and efficient asphalt VOCs reduction technology and materials are proposed to achieve green and low-emission construction. Finally, around the environmental protection theme of VOCs emission reduction, this study also put forward the prospect of full life cycle emission mechanism and feasibility of efficient composite materials design to support the urgent need for green transport.
Key words:  asphalt paving materials    volatile organic compounds    VOCs emission reduction    inhibitor    warm mixing agent    flame retardant
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  U414  
基金资助: 国家自然科学基金(51878526)
通讯作者:  *肖月,研究员,博士研究生导师,绿色建筑材料及制造教育部工程研究中心副主任。博士毕业于代尔夫特理工大学,曾获教育部霍英东青年教师奖。一直从事沥青基道路材料设计等研究工作,在低烟气排放沥青材料、抗滑罩面和固废道材资源化利用等方面取得了一系列原创研究成果。近五年主持国家自然科学基金项目3项,发表学术论文57篇。xiaoy@chd.edu.cn   
作者简介:  常郗文,武汉理工大学博士研究生,于2020年在武汉理工大学获得硕士学位。主要研究方向为沥青VOCs的全组分定量分析和基于多孔沸石材料的沥青VOCs减排效果研究,目前已在国内外期刊上发表学术论文4篇。
引用本文:    
常郗文, 龙永双, 仪明伟, 王晨, 肖月. 道路沥青挥发性有机化合物减排材料的研究进展[J]. 材料导报, 2023, 37(20): 22040399-16.
CHANG Xiwen, LONG Yongshuang, YI Mingwei, WANG Chen, XIAO Yue. Research Progress of Emission Reduction Materials for Volatile Organic Compounds Reduction in Asphalt Pavement Construction. Materials Reports, 2023, 37(20): 22040399-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040399  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040399
1 Chang X W, Zhang R H, Xiao Y, et al. Construction and Building Materials, 2020, 234, 117370.
2 Statistical bulletin on the development of the transportation industry(2021). Ministry of Transport of the People’s Republic of China, 2022(in Chinese).
2021年交通运输行业发展统计公报. 交通运输部, 2022.
3 Kitto A M, Pirbazari M, Badriyha B N, et al. Environmental Technology, 1997, 18(2), 121.
4 Brandt H C, De Groot P C, Molyneux M K, et al. The Annals of occupational hygiene, 1985, 29(1), 27.
5 Wey H E, Breitenstein M J, Toraason M A. Carcinogenesis, 1992, 13(6), 1047.
6 Huang L S. Sensors and Materials, 2018, 30(3), 633.
7 Wang M, Wang C, Huang S, et al. Journal of Cleaner Production, 2021, 318, 128596.
8 Shu Guang Y. Advanced Materials Research, 2015, 3696, 826.
9 Tao P. In: 3rd International Conference on Civil Engineering, Architecture and Building Materials(CEABM 2013). Jinan, 2013, pp. 1829.
10 Chang X W. Research on quantitative analysis of asphalt vocs and inhibitor contribution of zeolites. Master’s Thesis, Wuhan University of Technology, China, 2020(in Chinese).
常郗文. 沥青VOCs的全组分定量分析及沸石的VOCs抑制研究. 硕士学位论文, 武汉理工大学, 2020.
11 Agboola O D, Benson N U. Frontiers in Environmental Science, 2021, 9, 678574.
12 Conner W C. Abstracts of Papers of the American Chemical Society, 2010, 240, 13.
13 Khalkhali M, Zhu X, Shi Y, et al. Journal of CO2 Utilization, 2020, 36, 64.
14 Fan W J, Yang G J, Chi J W, et al. RSC Advances, 2016, 6(60), 54841.
15 Cychosz K A, Thommes M. Engineering, 2018, 4(4), 559.
16 Puziy A M, Lodewyckx P, Ritter J A, et al. Frontiers in Chemistry, 2021, 9, 668553.
17 Ovechko V, Dmytruk A, Mygashko V. Optica Applicata, 2003, 33(1), 41.
18 Wei Y, Wang J, Gu C, et al. Chemistry and Technology of Fuels and Oils, 2021, 56(6), 932.
19 Peng X, Li Z. Intelligent Automation and Soft Computing, 2010, 16(5), 833.
20 Zhang H H. Study on performance and suppression effect of inhibitors mo-dified asphalt. Master’s Thesis, Wuhan University of Technology, China, 2014(in Chinese).
张红华. 抑烟沥青的性能及抑烟效果评价研究. 硕士学位论文, 武汉理工大学, 2014.
21 Huang G. Exploitation of modified asphalt of fume suppression and study on performance of its mixture under the elevated temperature. Ph. D. Thesis, Chongqing Jiaotong University, China, 2013(in Chinese).
黄刚. 高温条件下抑烟改性沥青开发及混合料性能研究. 博士学位论文, 重庆交通大学, 2013.
22 Long Y, Wu S, Xiao Y, et al. Journal of Cleaner Production, 2018, 181, 784.
23 Qian S L, Wang F. Advanced Materials Research, 2011, 413, 472.
24 Xiao F, Peng X, Qian S. Intelligent Automation and Soft Computing, 2010, 16(5), 797.
25 Zhang X Y. Green road with low flue gas asphalt and mixture experimental research. Master’s Thesis, Chongqing Jiaotong University, China, 2011(in Chinese).
张新雨. 低烟气环保路用沥青及其混合料性能试验研究. 硕士学位论文, 重庆交通大学, 2011.
26 Cui P Q, Wu S P, Xiao Y, et al. Materials Research Innovations, 2015, 19, S158.
27 Xiao F, Zhang H Z, Zhang X Y, et al. Intelligent Automation and Soft Computing, 2010, 16(5), 805.
28 Zhou X X, Moghaddam T B, Chen M Z, et al. Science of the Total Environment, 2020, 745, 10.
29 Zhang P F. Synthetize zeolite with red mud ang steel slag for asphalt VOCs reduction. Master’s Thesis, Wuhan University of Technology, China, 2020(in Chinese).
张鹏飞. 赤泥-钢渣复合制备沸石及其在沥青VOCs抑制中的应用. 硕士学位论文, 武汉理工大学, 2020.
30 Xiao Y, Chang X W, Dong Q K, et al. China Journal of Highway and Transport, 2020, 30(10), 276(in Chinese).
肖月, 常郗文, 董前坤, 等. 中国公路学报, 2020, 33(10), 276.
31 Sharma A, Lee B K. Environmental Science-Nano, 2017, 4(3), 613.
32 Sharma A, Lee B K. Energy, 2017, 136, 142.
33 Xiao Y, Chang X W, Zhang X S, et al. Journal of Chang’an University(Natural Science Edition), 2019, 39(4), 17(in Chinese).
肖月, 常郗文, 张晓珊, 等. 长安大学学报(自然科学版), 2019, 39(4), 17.
34 Zhang X, Xiao Y, Long Y, et al. Construction and Building Materials, 2021, 279, 122485.
35 Chen J, De Crisci A G, Xing T. Canadian Journal of Chemical Enginee-ring, 2016, 94(1), 7.
36 Kamal M S, Razzak S A, Hossain M M. Atmospheric Environment, 2016, 140, 117.
37 Sun S W, Qiao Y Y, Yang X F, et al. New Building Materials, 2017, 44(1), 5(in Chinese).
孙仕伟, 乔云雁, 杨晓菲, 等. 新型建筑材料, 2017, 44(1), 5.
38 Huang G, He Z Y, Zhou C, et al. China Journal of Highway and Transport, 2015, 28(10), 1(in Chinese)
黄刚, 何兆益, 周超, 等. 中国公路学报, 2015, 28(10), 1.
39 Huang G, He Z Y, Huang Y C, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(6), 1229.
40 Cui P, Wu S, Xiao Y, et al. Journal of Cleaner Production, 2015, 108, 987.
41 Cui P Q, Zhou H G, Li C, et al. Construction and Building Materials, 2016, 123, 69.
42 Zhang Z M. Shanxi Science and Technology of Communications, 2014, 12(6), 38(in Chinese).
张志敏. 山西交通科技, 2014, 12(6), 38.
43 Guillet-Nicolas R, Wainer M, Marcoux L, et al. Journal of Colloid and Interface Science, 2020, 579, 489.
44 Ma F. Research on performance of pavement and modification mechanism of nano-CaCO3 modified asphalt. Master’s Thesis, Chang’an University, China, 2004(in Chinese).
马峰. 纳米碳酸钙改性沥青路用性能及改性机理研究. 硕士学位论文, 长安大学, 2004.
45 Yang X W, Peng X Y, Zhang X Y, et al. Journal of Chongqing University, 2013, 36(12), 70(in Chinese).
杨锡武, 彭绪亚, 张兴雨, 等. 重庆大学学报, 2013, 36(12), 70.
46 Shu B, Wu S, Li C, et al. Emerging Materials Research, 2019, 8(2), 1.
47 Wu S, Ye Y, Shu B, et al. Journal of Testing and Evaluation, 2020, 48(3), 20190208.
48 Abdullah M E, Hainin M R, Yusoff N I M, et al. Construction and Buil-ding Materials, 2016, 113, 488.
49 Wang G H, Dong F Q. China Non-metallic Minerals Industry, 2007(5), 9(in Chinese).
王光华, 董发勤. 中国非金属矿工业导刊, 2007(5), 9.
50 Wang Z H, Li Y W, Ge J, et al. China Journal of Highway and Transport, 2014, 27(11), 17(in Chinese).
王朝辉, 李彦伟, 葛娟, 等. 中国公路学报, 2014, 27(11), 17.
51 Qiao Z, Chen Q, Wang Z H, et al. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(8), 7(in Chinese).
乔志, 陈谦, 王朝辉, 等. 重庆交通大学学报:自然科学版, 2021, 40(8), 7.
52 Guo T, Fu H, Wang C, et al. Sustainability, 2021, 13(16), 8932.
53 Yuan J A, Zhou J P, Li Y Z. China Journal of Highway and Transport, 2005, 18(4), 21(in Chinese).
原健安, 周吉萍, 李玉珍. 中国公路学报, 2005, 18(4), 21.
54 Peng X, Qian S, Xiao F, et al. International Conference on Chemical Engineering and Advanced Materials, 2011, 507.
55 Possebon E P, Specht L P, Pereir D S, et al. Road Materials and Pavement Design, 2019, 20(6), 1481.
56 Cui P, Wu S, Li F, et al. Materials, 2014, 7(9), 6130.
57 Shen A, Wu H, Guo Y, et al. Journal of Materials in Civil Engineering, 2021, 33(2), 04020454.
58 Li N, Jiang Q, Wang F, et al. Journal of Cleaner Production, 2021, 278, 123479.
59 Du L, Li Y, Li C. In: International Forum on Mechanial and Material Engineering(IFMME 2013). Guangzhou, 2013, pp. 913.
60 Nilsson P T, Bergendorf U, Tinnerberg H, et al. Annals of Work Exposures and Health, 2018, 62(7), 828.
61 Yang J G. Journal of Highway and Transportation Research and Development, 2006(8), 26.
仰建岗. 公路交通科技, 2006(8), 26.
62 Dokandari P A, Kaya D, Topal A, et al. In: 4th International Confe-rence on Road and Rail Infrastructure(CETRA). Sibenik, 2016, pp. 245.
63 Dokandari P A, Topal A. Periodica Polytechnica-Civil Engineering, 2015, 59(4), 475.
64 D’angelo J, Harm E, Bartosze J, et al. American trade initiatives, 2008, 1, 42.
65 Qin Y C, Wang S Y, Zeng W, et al. In: 2nd International Conference on Advanced Engineering Materials and Technology(AEMT). Zhuhai, 2012, pp. 1686.
66 Carreno Gomez N H, Oeser M. Road Materials and Pavement Design, 2021, 22, S641.
67 Ferrotti G, Ragni D, Lu X, et al. Materials and Structures, 2017, 50(5), 226.
68 Xiu M, Wang X Y, Morawska L, et al. Journal of Cleaner Production, 2020, 275, 9.
69 Zhang Y, Leng Z, Zou F, et al. Journal of Cleaner Production, 2018, 172, 686.
70 Ma F, Wang Y J, Fu Z, et al. Highway, 2021, 66(3), 1(in Chinese).
马峰, 王钰洁, 傅珍, 等. 公路, 2021, 66(3), 1.
71 Sheng N. Traffic Engineering and Technology for National Defense, 2021, 19(4), 64(in Chinese).
盛宁. 国防交通工程与技术, 2021, 19(4), 64.
72 Ji J, Dong Y, Yang Y Q, et al. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(6), 133(in Chinese).
季节, 董阳, 杨跃琴, 等. 中国石油大学学报(自然科学版), 2020, 44(6), 133.
73 Cao R, Leng Z, Yu H, et al. Resources Conservation and Recycling, 2019, 147, 137.
74 Yang K K. Preparation and performance of warm mix asphalt additives based on geopolymer. Master’s Thesis, Shenyang Jianzhu University, China, 2020(in Chinese).
杨凯凯. 地聚合物沥青混合料温拌剂的制备与性能研究. 硕士学位论文, 沈阳建筑大学, 2020.
75 Zou T, Dong G B, Hao X J, et al. Journal of Liaocheng University(Na-tural Science Edition), 2021, 34(6), 50(in Chinese).
邹泰, 董光彬, 郝晓君, 等. 聊城大学学报(自然科学版), 2021, 34(6), 50.
76 Deng Y, Huang W R, Yang Y Z, et al. Subgrade Engineering, 2021(2), 70(in Chinese).
邓奕, 黄维蓉, 杨玉柱, 等. 路基工程, 2021(2), 70.
77 Zhao B L, Tu H T. Transportation Science and Technology, 2021(1), 125(in Chinese).
赵百磊, 涂洪涛. 交通科技, 2021(1), 125.
78 Jia H Z. Shandong Jiaotong Keji, 2020(6), 15(in Chinese).
贾荷柱. 山东交通科技, 2020(6), 15.
79 Yang W J. Study on performance and application of asphalt warm mix agent based on surface active technology. Master’s Thesis, Dalian University of Technology, China, 2019(in Chinese).
杨文杰. 基于表面活性技术的沥青温拌剂性能及应用研究. 硕士学位论文, 大连理工大学, 2019.
80 Liu M Q, Li R K, Zhao T Y, et al. Technology of Highway and Transport, 2017, 33(6), 32(in Chinese).
刘秘强, 李汝凯, 赵天宇, 等. 公路交通技术, 2017, 33(6), 32.
81 Leng Z, Al-Qadi I L, Cao R. Transportmetrica a-Transport Science, 2018, 14(7), 562.
82 Liu X P, Xi W B, Zou Y X, et al. Journal of Wuhan University of Technology(Transportation Science and Engineering), 2022, 46(3), 532(in Chinese).
刘贤鹏, 奚文彬, 邹莹雪, 等. 武汉理工大学学报(交通科学与工程版), 2022, 46(3), 532.
83 Cao F. Journal of China and Foreign Highway, 2021, 41(3), 323(in Chinese).
曹芳. 中外公路, 2021, 41(3), 323.
84 Fan Q B, Xie D, Jiao L Y. Highway, 2017, 62(11), 25(in Chinese).
范群保, 谢东, 焦丽亚. 公路, 2017, 62(11), 25.
85 Wang W Q, Wen J H, Shi Y F, et al. Construction Technology, 2015, 44(11), 78(in Chinese).
王文奇, 文建华, 石银峰, 等. 施工技术, 2015, 44(11), 78.
86 Luo H Y, Qiu Y J, Zhao B Y, et al. Journal of Building Materials, 2021, 24(1), 153(in Chinese).
罗浩原, 邱延峻, 赵碧云, 等. 建筑材料学报, 2021, 24(1), 153.
87 Zhou B, Feng Z P, Xiao X C, et al. Gonglu JiaoTong Keji, 2015, 11(2), 88(in Chinese).
周彬, 封志鹏, 肖雪春, 等. 公路交通科技(应用技术版), 2015, 11(2), 88.
88 Leng Z, Yu H, Zhang Z, et al. Construction and Building Materials, 2017, 144, 291.
89 Qiu Y J, Luo H Y, Ouyang C F, et al. Journal of China and Foreign Highway, 2020, 40(2), 233(in Chinese).
邱延峻, 罗浩原, 欧阳铖霏, 等. 中外公路, 2020, 40(2), 233.
90 Xu T, Huang X M, Xie J. Journal of Southeast University(Natural Science Edition), 2008, 38(2), 274(in Chinese).
许涛, 黄晓明, 谢军. 东南大学学报(自然科学版), 2008, 38(2), 274.
91 Liu W J, Zhou T, Sun Y, et al. Research and Exploration in Laboratory, 2019, 38(12), 10(in Chinese).
刘文娟, 周婷, 孙杨, 等. 实验室研究与探索, 2019, 38(12), 10.
92 Shen Y P, Qiao Y Y, Xue Z, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(3), 961(in Chinese).
盛燕萍, 乔云雁, 薛哲, 等. 硅酸盐通报, 2018, 37(3), 961.
93 Xu T, Huang X M, Zeng L, et al. Journal of Building Materials, 2008, 11(5), 6(in Chinese).
许涛, 黄晓明, 曾磊, 等. 建筑材料学报, 2008, 11(5), 6.
94 Xia W, Wang S, Xu T, et al. Construction and Building Materials, 2021, 266, 121203.
95 Xia W, Wang S, Wang H, et al. Journal of Cleaner Production, 2021, 279, 123538.
96 Xu T, Wang Y, Xia W, et al. Construction and Building Materials, 2018, 173, 209.
97 Xu T, Wang H, Huang X, et al. Fuel, 2013, 105, 757.
98 Yu J Y, Luo X F, Wu S P, et al. China Journal of Highway and Transport, 2007, 20(2), 5(in Chinese).
余剑英, 罗小锋, 吴少鹏, 等. 中国公路学报, 2007, 20(2), 5.
[1] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[2] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[3] 耿亚茹, 杨国超, 徐冰冰, 张求慧. 利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸[J]. 材料导报, 2023, 37(5): 21070085-7.
[4] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[5] 陆海梅, 王超, 王洪坤, 张李佳琦, 黄勇, 吴敏. 全组分微纳化木质纤维素基聚磷酸铵阻燃剂的制备及在纸张中的应用[J]. 材料导报, 2023, 37(10): 22020161-1.
[6] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[7] 徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
[8] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[9] 秦媛, 王文彬, 刘加平. 淀粉基水化温升抑制剂对水泥-粉煤灰复合胶凝材料水化的影响[J]. 材料导报, 2021, 35(16): 16065-16069.
[10] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[11] 石亮, 谢德擎, 王学明, 袁俊, 穆松, 魏鹏, 朱梦伟. 抗侵蚀抑制剂对混凝土吸水性能及抗盐结晶性能的影响[J]. 材料导报, 2020, 34(14): 14093-14098.
[12] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[13] 马砺, 刘志超, 肖旸, 康付如, 杨昆, 邓军. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.
[14] 于江, 程龙, 李林萍, 叶奋, 宋卿卿. KSHD温拌剂对新疆岩沥青改性沥青老化动力特性的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2418-2424.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed