Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20110227-9    https://doi.org/10.11896/cldb.20110227
  高分子与聚合物基复合材料 |
阻燃剂研究与应用进展及问题思考
徐建林1,2,*, 王涛1,2, 康成虎1,2, 杨文龙3, 牛磊1,2
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 河西学院物理与机电工程学院,甘肃 张掖 734000
Research and Applications of Flame Retardants: a Review and Thoughts
XU Jianlin1,2,*, WANG Tao1,2, KANG Chenghu1,2, YANG Wenlong3, NIU Lei1,2
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Physical and Electromechanical Engineering, Hexi University, Zhangye 734000, Gansu, China
下载:  全 文 ( PDF ) ( 2534KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物因其优异的特性在诸多领域备受关注。然而,绝大多数聚合物具有可燃和易燃特性,因聚合物燃烧引起的重特大火灾造成群死群伤和重大财产损失的恶性事件时有发生,这导致其在一些领域的应用受到限制。为了改善聚合物材料易燃的缺点、满足人们日常生活安全的需求,新型、高效与环保阻燃剂的研发成为阻燃领域一项重要的研究课题。
   目前,阻燃行业正处于蓬勃发展的态势,阻燃剂种类繁多。然而,阻燃剂在使用过程中也显现出一些问题。阻燃剂添加量大时,聚合物复合材料的力学性能会恶化,难以实现阻燃性能与力学性能的平衡;阻燃剂在发挥阻燃作用的同时会释放出烟尘和有害气体,给环境造成污染,难以满足环保的要求;阻燃剂在聚合物中难以分散且与聚合物的相容性差导致其阻燃效率降低;阻燃剂的添加会影响聚合物的色泽并且难以满足实际服役条件下对不同性能的要求。
   针对以上问题,研究者们致力于开发环保、高效、阻燃-抑烟一体化的新型阻燃剂,从提高阻燃剂在聚合物基体中的分散性以及两相界面设计方面着手,通过阻燃剂的复配、阻燃剂纳米化、表面改性技术满足聚合物对阻燃剂的多功能要求,并不断发展分散性、界面相容性的评判理论与关系模型,丰富、有效的定量评价体系将使设计环境友好、阻燃性能和综合性能优异的聚合物复合材料具有现实可行的意义。
   本文评述了阻燃剂在环保性、分散性、相容性、阻燃效率和对聚合物综合性能的影响方面研究与应用的进展;在此基础上,探讨了阻燃剂所面临的技术问题,论述了相关问题的解决方案与阻燃剂的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐建林
王涛
康成虎
杨文龙
牛磊
关键词:  阻燃剂  聚合物  性能  环保性  分散性  相容性    
Abstract: Polymer materials received much concern in many fields due to their excellent properties. However,most polymer materials are combustible and flammable, which leads to a lot of malignant events such as misfire, death and property loss and limits its application in some fields. In order to solve the flame-retardant problem of polymer materials and meet the needs for people's safe life, the development of new, efficient and environmentally friendly flame retardants has become an important research topic in the field of flame retardant.
At present, the flame retardant industry is the stage of vigorous development in China. There are many kinds of flame retardants. However, flame retardants also exposed some problems in the process of their application. A large number of flame retardants will deteriorate the mechanical properties of polymer composites, making it difficult to achieve a balance between flame retardancy and mechanical properties; the smoke and harmful gas produced by flame retardants in the process of exerting flame retardancy will cause serious pollution to the environment, which is not consistent with the environmental requirements; the flame retardant effect is reduced because of the difficulty of dispersing in the polymer and the poor compatibility with the polymer; the addition of flame retardant affects the color of polymer, so that it can not meet the requirements of different properties in actual application.
In response to the above problems, the researchers devoted to the development of the integration of environmental protection, high efficiency, flame retardant and smoke suppression of new flame retardant, and improved the dispersion of flame retardants in polymer matrix and two-phase interface design aspects. In order to meet the requirements of the multi-function of flame retardants of polymer, the flame retardants are usually treated via compounding, nano-treatment and surface modification technology. Besides, the quantitative evaluation systems including evaluation theory and model of dispersion and interface compatibility need to be further improved, which has a realistic significance on the design of environment-friendly and excellent comprehensive performance of polymer composites.
The research and application progress of flame retardants in environmental protection, dispersion, compatibility, flame retardant efficiency and the influence on the comprehensive performance of polymers are reviewed in this paper. On this basis, the technical problems of flame retardants are discussed. The solutions of related problems and the development trend of flame retardants are introduced.
Key words:  flame retardant    polymer    performance    environmental protection    dispersion    compatibility
发布日期:  2022-05-24
ZTFLH:  TB39  
基金资助: 国家自然科学基金 (51761025);甘肃省教育厅创新基金(2021A-023)
通讯作者:  ggdjlxu@sina.com   
作者简介:  徐建林,工学博士,兰州理工大学材料科学与工程学院教授、博士研究生导师,“甘肃省领军人才”和“甘肃省555创新人才工程”人才,《兰州理工大学学报》主编和编委会副主任委员。1993年6月在甘肃工业大学获得学士学位;2000年6月在甘肃工业大学获得硕士学位;2005年12在兰州理工大学获得博士学位,主要从事材料制备、微结构与性能等研究,在国内外发表论文100余篇,60余篇被SCI和EI检索。先后承担国家、省部级及企业科研课题20余项,获得国家发明专利5项,出版专业规划教材一部。
引用本文:    
徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
XU Jianlin, WANG Tao, KANG Chenghu, YANG Wenlong, NIU Lei. Research and Applications of Flame Retardants: a Review and Thoughts. Materials Reports, 2022, 36(10): 20110227-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110227  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20110227
1 Wang Y Z, Chen L. New Industrialization Straregy, 2016,6(1), 38 (in Chinese).
王玉忠, 陈力.新型工业化, 2016,6(1), 38.
2 Costa F R, Wagenknecht U, Heinrich G, et al. Polymer Degradation and Stability, 2007,92(10), 1813.
3 Nyambo C, Wilkie C A. Polymer Degradation and Stability, 2009, 94(4), 506.
4 Bao Z Y, Dong Y M. Intumescent flame retardant technology and application, Harbin Institute of Technology Press, China, 2005(in Chinese).
鲍治宇,董延茂. 膨胀阻燃技术及应用. 哈尔滨工业大学出版社,2005.
5 Peng H Q. Synthesis of phosphorus-containing bicyclic caged flame retardants and their application in intumescent flame retardant polypropy-lene systems. Ph.D. Thesis, Sichuan University, China, 2007(in Chinese).
彭华乔. 不同结构的双环笼状含磷阻燃剂的合成及其在聚丙烯阻燃改性中的应用.博士学位论文, 四川大学, 2007.
6 Reza A, Harintharavimal B, Azman H, et al. Fibers and Polymers, 2018, 19(4), 914.
7 Suparanon T, Surisaeng J, Phusunti N, et al. Chinese Journal of Polymer Science, 2018,36(5), 620.
8 Kong Q, Wu H, Zhang H, et al. Journal of Nanoscience and Nanotech-nology, 2016, 16(8), 8287.
9 Zou J H, Duan H J, Chen Y S, et al. Composites Part B: Engineering, 2020,199, 108228.
10 Jiang Y, Li J, Li B, et al. Polymer Degradationand Stability, 2015,115, 110.
11 Xu W, Wang G J, Zheng X R, et al. Polymer Degradationand Stability, 2015, 111, 142.
12 Qin Z L, Li D H, Li Q, et al. Materials and Design, 2016, 89, 988.
13 Chow W S, Chang L N, Jaafar M, et al. Journal of Composite Materials, 2015, 49(12), 1471.
14 Xu J L, Ma B X, Kang C H, et al. Journal of Lanzhou University of Technology, 2020, 46(2), 24(in Chinese).
徐建林, 马冰雪, 康成虎, 等. 兰州理工大学学报, 2020,46(2), 24.
15 Yan L, Xu Z S, Wang X H, et al. Progress in Organic Coatings,2017,112, 319.
16 Yang Z W, Liang X X, Xu X Q, et al. RSC Advances,2016, 6, 65921.
17 Tannenbaum R, Zubris M, David K, et al. The Journal of Physical Chemistey, 2006, 110(5), 2227.
18 Xiong X S, Zhang Z H, Li Q M, et al, Materials Reports, 2022,36(1), 21010018(in Chinese).
熊小双,张梓豪,李巧敏,等.材料导报, 2022,36(1), 21010018.
19 Zaman I, Phan T T, Kuan H C, et al. Polymer, 2011, 52(7), 1603.
20 Zare Y. Journalof Colloid and Interface Science, 2016,470, 245.
21 Zare Y. Internation Journal of Adhesion and Adhesives, 2016, 70, 191.
22 Chopra S, Deshmukh K A, Peshwe D,et al. Mechanics of Materials, 2017, 109, 11.
23 Li J, Yang Y Q, Luo X, et al. Rare Metal Materials and Engineering, 2013, 42(3), 644(in Chinese).
李健, 杨延清, 罗贤, 等. 稀有金属材料与工程, 2013,42(3), 644.
24 Aso O, Eguiazabal J I, Nazabal J, et al. Composites Science and Technology,2007, 67(13), 2854.
25 Xu J L, Kang C H, Niu L, et al. Materials Research Express,2019, 6(9), 950.
26 Luo Z P, Koo J H. Journal of Microscopy, 2007, 225(2), 118.
27 Liu D, Pourrahimi A M, Olsson R T, et al. European Polymer Journal,2015, 66, 67.
28 Glaskova T, Zarrelli M, Borisova A, et al. Composites Science and Technology, 2011, 71(13), 1543.
29 Zuiderduin W C J, Westzaan C, Huétink J, et al. Polymer, 2003, 44(1), 261.
30 Yang W L, Xu J L, Niu L, et al. Journal of Adhesion Science & Technology,2017, 32(7), 739.
31 Chen W, Liu P, Liu Y, et al. Polymer Chemistry, 2015, 6(24), 4409.
32 Ma M, Wang X P, Liu K, et al. Polymer International, 2020, 69(10), 985.
33 Zhu C, Li H P, Chen S C, et al. Modern Chemical Industry, 2015, 35(4), 116 (in Chinese).
朱超, 李惠萍, 陈世军, 等.现代化工, 2015, 35(4), 116.
34 Guo Y, Li Q. Sichuan Chemical Industry 2015, 18(4), 4(in Chinese).
郭岳,李谦. 四川化工, 2015,18(4), 4.
35 Qu H Q, Wu W H, Jiao Y H, et al. Journal of Chemical Industry and Engineering, 2006,57(5), 1259 (in Chinese).
屈红强, 武伟红, 焦运红, 等.化工学报, 2006, 57(5), 1259.
36 Song Y, Xue B, Wang J. et al. Journal of Polymer Research. 2020,27, 2.
37 Tawiah B, Yu B, Yuen R K K, et al. Carbon, 2019, 150, 8.
38 Qiu S, Wang X, Yu B, et al. Journal of Hazardous Materials,2017, 325, 327.
39 Shi X, Liao F, Ju Y, et al. Fire and Materials, 2017, 41, 362.
40 Ning T Z, Fu L, Zhang J Z, et al. Packaging Engineering, 2020,41(3), 156 (in Chinese).
宁廷州, 付玲, 张敬芝,等. 包装工程, 2020,41(3), 156.
[1] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[2] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[3] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[4] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[5] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[6] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[7] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[8] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[9] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[10] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[11] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[14] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed