Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21070085-7    https://doi.org/10.11896/cldb.21070085
  高分子与聚合物基复合材料 |
利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸
耿亚茹, 杨国超, 徐冰冰, 张求慧*
北京林业大学材料科学与技术学院,木质材料科学与应用教育部重点实验室,北京 100083
Construction of Biobased Core-shell Flame Retardant by Electrostatic Adsorption for the Flame Retardant Modification of Kraft Paper
GENG Yaru, YANG Guochao, XU Bingbing, ZHANG Qiuhui*
MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
下载:  全 文 ( PDF ) ( 22559KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善聚磷酸铵(APP)使基材表面变色和力学性能降低的缺点,同时符合阻燃剂的绿色发展趋势,制备了一种核壳结构的生物基阻燃剂(APP@EP)。采用植酸钠(PA-Na)和蛋清蛋白(EWP)作为壳体材料,在水溶液中通过静电吸附作用将其逐层沉积在APP表面。通过涂布工艺将APP@EP应用于牛皮纸,并对阻燃牛皮纸的阻燃性能和力学性能进行了研究。热重(TG)分析表明,APP@EP在高温下的热稳定性显著增强,700 ℃时残炭量达到56.7%。APP@EP阻燃改性牛皮纸的极限氧指数值(LOI)从19.8%提高到45.2%,炭化长度从210 mm降低到41 mm。与APP阻燃改性牛皮纸相比,APP@EP阻燃改性牛皮纸的热释放速率峰值(PHRR)和总热释放量(THR)分别降低了35.91%和44.98%,抗张指数提高了24.92%。对残炭的进一步研究表明,APP@EP阻燃改性牛皮纸经过燃烧后,形成了完整致密的含有P-O-P和P-O-C结构的炭层,并且其石墨化程度较高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿亚茹
杨国超
徐冰冰
张求慧
关键词:  生物基阻燃剂  核-壳结构  聚磷酸铵(APP)  牛皮纸    
Abstract: Aiming at improving the disadvantages of ammonium polyphosphate (APP) that caused surface discoloration and lower mechanical properties of the substrate, and meeting the green development requirement simultaneously, a biobased flame retardant (APP@EP) with core-shell structure was fabricated. Sodium phytate (PA-Na) and egg white protein (EWP) were used as shell materials, which were deposited on the surface of APP layer by layer through electrostatic adsorption in aqueous solution. Then APP@EP was applied to kraft paper through the coating process, and the flame resistance and mechanical properties of flame retardant kraft papers were investigated. Thermal gravimetric (TG) analysis indicated that the thermal stability of APP@EP was improved significantly at high temperature, and the residual mass reached 56.7% at 700 ℃. The limiting oxygen index (LOI) value of APP@EP treated kraft paper was increased from 19.8% to 45.2%, and the char length was decreased from 210 mm to 41 mm. Compared with APP treated kraft paper, the peak of heat release rate (PHRR) and total heat release (THR) of APP@EP treated kraft paper decreased by 35.91% and 44.98%, and the tensile index increased by 24.92%. Further analysis of residues demonstrated that after the combustion of APP@EP treated kraft paper, a complete and dense carbon layer containing P-O-P and P-O-C structures was formed with higher degree of graphitization.
Key words:  biobased flame retardant    core-shell structure    ammonium polyphosphate (APP)    kraft paper
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TS72  
基金资助: 国家自然科学基金(31670564)
通讯作者:  *张求慧,2005年毕业于北京林业大学,获得工学博士学位。现为北京林业大学材料科学与技术学院教授、博士研究生导师。主要从事新型木质复合材料、家具材料及包装材料的研究。目前已发表学术论文100余篇,其中SCI、EI、CSCD论文50余篇;出版专著2部、获专利授权5项。qhzh66@163.com   
作者简介:  耿亚茹,2019年毕业于河北农业大学,获得工学学士学位;2022年毕业于北京林业大学,获得工学硕士学位。现为北京林业大学材料科学与技术学院实验技术岗教师。主要从事阻燃剂和阻燃材料的研究。
引用本文:    
耿亚茹, 杨国超, 徐冰冰, 张求慧. 利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸[J]. 材料导报, 2023, 37(5): 21070085-7.
GENG Yaru, YANG Guochao, XU Bingbing, ZHANG Qiuhui. Construction of Biobased Core-shell Flame Retardant by Electrostatic Adsorption for the Flame Retardant Modification of Kraft Paper. Materials Reports, 2023, 37(5): 21070085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070085  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21070085
1 Jiang J X, Li J Z, Hu J, et al. Construction and Building Materials, 2010, 24(12), 2633.
2 Wang S H, Jiang Y C, Meng Y J, et al. Polymer Degradation and Stability, 2021, 188, 109561.
3 Saihi D, Vroman I, Giraud S, et al. Reactive and Functional Polymers, 2005, 64(3), 127.
4 Cheng J J, Niu S S, Ma D, et al. Journal of Applied Polymer Science, 2020, 137, 2.
5 Xia Y P, Tang R, Tao S X, et al. Journal of Applied Polymer Science, 2018, 135(34), 46662.
6 Gao W Y, Qian X D, Wang S J. Journal of Applied Polymer Science, 2018, 135, 45742.
7 Li S X, Zhou Y, Cheng J J, et al. Journal of Applied Polymer Science, 2020, 137, 1.
8 Huang Y R, Yang J W, Wang Z Z. Journal of Thermoplastic Composite Materials, 2017, 30, 816.
9 Tang G, Jiang H H, Yang Y D, et al. Journal of Polymer Research, 2020, 27(12), 375.
10 Singh H, Jain A K. Journal of applied Polymer Science, 2008, 111(2), 1115.
11 Chen P F, Yan K K, Leng J X, et al. Plastics, Rubber and Composites, 2018, 47(6), 258.
12 Wu Y H. Properties of poplar wood treated with phytic acid/and zinc salt or melamine. Master's Thesis, Beijing Forestry University, China, 2020 (in Chinese).
吴宇晖. 植酸及其与锌盐或三聚氰胺复合处理杨木的性能. 硕士学位论文, 北京林业大学, 2020.
13 Watson D, Schiraldi D A. Polymers, 2020, 12(4), 849.
14 Li P, Liu C, Xu Y J, et al. Polymer Degradation and Stability, 2020, 181, 109302.
15 Ding S Y, Liu P, Zhang S M, et al. Journal of Applied Polymer Science, 2020, 137, 1.
16 Jing J, Zhang Y, Tang X L, et al. Polymer, 2017, 108, 361.
17 Xiong Z Q, Zhang Y, Du X Y, et al. ACS Sustainable Chemistry and Engineering, 2019, 7, 8954.
18 Zhang Y, Xiong Z Q, Ge H D, et al. ACS Sustainable Chemistry and Engineering, 2020, 8(16), 6402.
19 Jin S C, Li K, Zhang X W, et al. Journal of Hazardous Materials, 2020, 399, 123064.
20 Fang Y C, Sun W H, Li J W, et al. International Journal of Biological Macromolecules, 2021, 175(4), 140.
21 Jin X D, Cui S P, Sun S H, et al. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105485.
22 Alongi J, Carletto R A, Bosco F, et al. Polymer Degradation and Stability, 2014, 99(1), 111.
23 Bosco F, Carletto R A, Alongi J, et al. Carbohydrate Polymers, 2013, 94(1), 372.
24 Liu X H, Zhang Q Y, Peng B, et al. Journal of Cleaner Production, 2020, 243, 118641.
25 Wang W, Zhang W, Zhang S F, et al. Construction and Building Materials, 2014, 65, 151.
26 Kong J L, Yu S N. Acta Biochimica et Biophysica Sinica, 2007, 39(8), 549.
27 Cheng X W, Wu Y X, Hu B Q, et al. Surface Innovations, 2020, 8, 315.
28 Zhang S D, Chen Z R, Ding M Y, et al. Construction and Building Materials, 2020, 262(12), 120754.
29 Gallo E, Braun U, Schartel B, et al. Polymer Degradation and Stability, 2009, 94, 1245.
30 Camino G, Grassie N, Mcneill I C. Journal of Polymer Science Polymer Chemistry Edition, 1978, 16(1), 95.
31 Daneluti A L M, Matos J R. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 275.
32 Wang N, Liu Y S, Liu Y, et al. Journal of Analytical and Applied Pyrolysis, 2017, 128(11), 224.
33 Xu F, Zhong L, Xu Y, et al. Journal of Materials Science, 2019, 54, 1884.
34 Cheema H A, El-Shafei A, Hauser P J. Carbohydrate Polymers, 2013, 92(1), 885.
35 Chi Z Y, Guo Z W, Xu Z C, et al. Polymer Degradation and Stability, 2020, 176, 109151.
36 Wang W. Study of microencapsulated ammonium polyphosphate and its synergistic effect on the property and mechanism of flame-retardant wood-plastic composites. Ph. D. Thesis, Beijing Forestry University, China, 2018 (in Chinese).
王雯. 聚磷酸铵微囊化及协效阻燃木塑材料性能与机制研究, 博士学位论文, 北京林业大学, 2018.
37 Yang G C, Cai J R, Geng Y R, et al. ACS Sustainable Chemistry and Engineering, 2020, 8, 14365.
38 Shukla A, Basak S, Ali S W, et al. Cellulose, 2017, 24, 423.
39 Zhang Y, Zhang M, Chen M S, et al. Chemical Engineering Journal, 2018, 354, 1032.
40 Yang J Y, Xia Y, Zhao J, et al. Chinese Journal of Polymer Science, 2020, 38, 1294.
[1] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[2] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed