Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22050191-7    https://doi.org/10.11896/cldb.22050191
  高分子与聚合物基复合材料 |
聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究
张军, 郭乃胜*, 吕欣, 褚召阳, 房辰泽
大连海事大学交通运输工程学院,辽宁 大连 116026
Preparation and Properties of Polyamide-based Resin Type Rapid Repair Material for Asphalt Pavement Shallow Groove
ZHANG Jun, GUO Naisheng*, LYU Xin, CHU Zhaoyang, FANG Chenze
College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
下载:  全 文 ( PDF ) ( 13574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 坑槽是沥青路面常见的早期病害,该病害若得不到及时维修和处置,将影响交通安全和道路服役寿命。为了解决传统冷补料在初期强度低、界面黏结力弱、耐久性差等问题,本研究研发了一种以聚酰胺6(PA6)为基体树脂,将其与聚丙烯(PP)、乙烯-乙酸乙烯酯共聚物(EVA)和马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)等按比例复配,并通过挤出造粒制备的新型聚酰胺基树脂型沥青路面浅槽快速修补材料。采用抗弯强度试验研究了修补材料的弹性模量、屈服强度与抗弯强度;利用低温抗冲击试验与低温拉伸试验研究了修补材料的低温韧性;通过熔融指数试验分析了修补材料在使用状态下修补效果的优劣;应用浸水试验分析了修补材料的吸水能力;借助扫描电镜(SEM)观测了修补材料低温断裂面的微观结构,以及利用红外光谱(FTIR)试验推断了修补材料中发生的主要化学反应。研究结果表明,随着PP掺量的增加,其对修补材料的弹性模量、屈服强度、抗弯强度与低温韧性产生的负面影响逐渐显著;随着PP掺量从0%增至30%,修补材料熔融指数从15.6 g/10min降至3 g/10min,严重影响施工质量;PP对修补材料吸水性有良好的改善作用,当PP掺量从10%增加到20%时,修补材料的饱和含水率从5.6%降低到3.9%;PA6内部存在的氨基和POE-g-MAH中的马来酸酐发生增容反应,改善了PA6与PP之间的界面张力,从而提高了它们的相容性。基于以上试验得到了PP最佳含量为10%~20%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军
郭乃胜
吕欣
褚召阳
房辰泽
关键词:  沥青路面  浅槽修补材料  聚酰胺6  聚丙烯  力学性能    
Abstract: Potholes are common early asphalt pavement disease, if not timely repair and disposal, which will result in traffic safety and road service life. In order to solve the problems of low initial strength, weak interfacial adhesion and poor durability of traditional Cold Mix Patching Materials (CMPMs), this study has developed a new polyamide-based resin type rapid repair material for asphalt pavement shallow groove. Polyamide 6 (PA6) used as the base resin was compounded with polypropylene (PP), ethylene-vinyl acetate copolymer (EVA) and maleic anhydride grafted ethylene- octene copolymer (POE-g-MAH) in proportion to the repair material, and the shallow groove fast repair material is made by extrusion granulation. The elastic modulus, yield strength and bending strength of the repair material were investigated using flexural strength tests. The low-temperature impact resistance and low-temperature tensile tests were used to explore the low-temperature toughness of the repair material. The melt index test was conducted to expose the advantages and disadvantages in practice use of repairing materials. The water immersion test was employed to analyze the water absorption capacity of the repair material, and the scanning electron microscope was used to observe the microstructure of low temperature fracture surface of the repair material. Then the key chemical reaction of repair material was explored by an infrared spectroscopy test. The results showed that the negative effects on the elastic modulus, yield strength, bending strength and low-temperature toughness of the repair material gradually strengthened as the increasing content. The PP content increased from 0% to 30%, the melt index of repair material decreased from 15.6 g/10 min to 3 g/10 min, which seriously affected the construction quality at this time. The PP exhibited a good improvement on the water absorption of the repair material, when the PP content increased from 10% to 20%, the saturated water content reduced from 5.6% to 3.9%; the presence of amino groups inside PA6 and the compatibilization reaction of maleic anhydride in POE-g-MAH improved the PA6/PP interfacial tension, and thus improved compatibility between them. Based on the experimental study, the optimal PP content is considered to be 10% to 20%.
Key words:  asphalt pavement    shallow groove repair material    polyamide 6    polypropylene    mechanical property
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TU414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);大连海事大学“双一流”建设专项(BSCXXM021);辽宁公路科技创新重点科研项目(201701);大连市科技创新基金项目(2020JJ26SN062)
通讯作者:  *郭乃胜,博士,博士后,大连海事大学交通运输工程学院教授、博士研究生导师。2013—2014 年,美国密歇根理工大学访问学者。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文70余篇,其中SCI、EI检索40余篇。naishengguo@126.com   
作者简介:  张军,2020年6月于东北农业大学获得工学学士学位。现为大连海事大学交通运输工程学院硕士研究生,在郭乃胜教授的指导下进行研究。目前主要研究领域为沥青与沥青混合料。
引用本文:    
张军, 郭乃胜, 吕欣, 褚召阳, 房辰泽. 聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究[J]. 材料导报, 2023, 37(20): 22050191-7.
ZHANG Jun, GUO Naisheng, LYU Xin, CHU Zhaoyang, FANG Chenze. Preparation and Properties of Polyamide-based Resin Type Rapid Repair Material for Asphalt Pavement Shallow Groove. Materials Reports, 2023, 37(20): 22050191-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050191  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22050191
1 Li L, Zhang Y, Zhang Y B. Journal of Dalian University of Technology, 2021, 61(3), 280(in Chinese).
李玲, 张玉, 张勇博. 大连理工大学学报, 2021, 61(3), 280.
2 Hafezzadeh R, Autelitano F, Giuliani F. Construction and Building Materials, 2021, 306, 124870.
3 Xu Q, Geng L T, Wei X, et al. Journal of Building Materials, 2020, 23(1), 156(in Chinese).
徐茜, 耿立涛, 魏雪, 等. 建筑材料学报, 2020, 23(1), 156.
4 Tong L. Research on the rapid repairing material of asphalt pavement pothole. Master’s Thesis, Chang’an University, China, 2014(in Chinese).
童立. 沥青路面坑槽快速修补材料研究. 硕士学位论文, 长安大学, 2014.
5 Han C Y, Yuan Y S. Journal of China & Foreign Highway, 2013, 33(6), 59(in Chinese).
韩传玉, 袁英爽. 中外公路, 2013, 33(6), 59.
6 Kwon H, Lee A S, Lee J H, et al. Journal of Industrial and Engineering Chemistry, 2017, 53, 386.
7 Shimizu S, Fujiwara H, Maruoka M, et al. Advanced Materials Research, 2015, 3903(1129), 385.
8 Yuan W, Yuan M, Zou L H, et al. In: Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security. California, 2011, pp. 519.
9 Wang Q. Journal of Highway and Transportation Research and Development, 2004(1), 42(in Chinese).
王起. 公路交通科技, 2004(1), 42.
10 Wang B. Study on properties of polyurethane modified epoxy resin for road repair. Master’s Thesis, Xinjiang University, China, 2018(in Chinese).
王渤. 聚氨酯改性环氧树脂道路修补材料的性能研究. 硕士学位论文, 新疆大学, 2018.
11 Sharma P, Sambale A, Stommel M, et al. Continuum Mechanics and Thermodynamics, 2020, 32(2), 307.
12 Kim J, Lee J, Son Y. Materials Letters, 2014, 126, 43.
13 Abacha N, Kubouchi M, Sakai T. Express Polymer Letters, 2009, 3(4), 245.
14 Do V T, Nguyen-Tran H D, Chun D M. Composite Structures, 2016, 150, 240.
15 Mohd Ishak Z A, Chow W S, Takeichi T. Polymer Composites, 2010, 31(2), 195.
16 Gong J L. Preparation and properties of toughening modified nylon 6. Master’s Thesis, South China University of Technology, China, 2019(in Chinese).
龚继辽. 尼龙6的增韧改性及其性能研究. 硕士学位论文, 华南理工大学, 2019.
17 Roeder J, Oliveira R V B, Gonçalves M C, et al. Polymer Testing, 2002, 21(7), 815.
18 Wu Y J, Luo D S, Yang H J, et al. Plastics, 2007(5), 30(in Chinese).
伍玉娇, 骆丁胜, 杨红军, 等. 塑料, 2007(5), 30.
19 Guo H, Wang X X, Guan H Y, et al. China Plastics, 2009, 33(4), 1(in Chinese).
郭红, 王秀秀, 关宏宇, 等. 中国塑料, 2019, 33(4), 1.
20 Yan L L. Simulation analysis about potholes repair structure of asphalt pavement based on ANSYS. Master’s Thesis, Chang’an University, China, 2012(in Chinese).
延丽丽. 基于ANSYS的沥青路面坑槽修补结构仿真分析. 硕士学位论文, 长安大学, 2012.
21 Huang B F, Zou X W, Wang Y. China Plastics Industry, 2006(12), 49(in Chinese).
黄伯芬, 邹修文, 王樱. 塑料工业, 2006(12), 49.
22 Buchdahl R, Zaukelies D A. Angewandte Chemie, 1962, 74(15), 569.
23 Khanna Y P, Kuhn W P, Sichina W J. Macromolecules, 1995, 28(8), 2644.
24 Sharma P, Sambale A, Stommel M, et al. Continuum Mechanics and Thermodynamics, 2020, 32(2), 307.
25 Mohd Ishak Z A, Chow W S, Takeichi T. Polymer Composites, 2010, 31(2), 195.
26 Li D X, Jia D M, Guo B C. Polymer Materials Science & Engineering, 2002(1), 71(in Chinese).
李笃信, 贾德民, 郭宝春. 高分子材料科学与工程, 2002(1), 71.
27 Ishak Z A M, Chow W S, Takeichi T. European Polymer Journal, 2008, 44(4), 1023.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[10] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed