Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22050080-7    https://doi.org/10.11896/cldb.22050080
  无机非金属及其复合材料 |
金属诱导制备纳米晶硅薄膜的研究进展
王宁, 马晓波*, 侯毅, 郑富, 曹志杰
宁夏大学物理与电子电气工程学院,银川 750021
Research Progress on Metal-induced Preparation of Nanocrystalline Silicon Thin Films
WANG Ning, MA Xiaobo*, HOU Yi, ZHENG Fu, CAO Zhijie
School of Physics and Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 7379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米晶硅是纳米尺度无定形态的硅晶粒,具备体硅所不具有的新颖光电性能,具有显著的量子限域效应,是发光半导体、光伏发电等领域中的关键材料。实验上,非晶硅通过气氛退火获得晶化的纳米晶硅,本质上破坏了非晶硅中的Si-Si共价键,局域生核形成纳米晶硅,因此,晶化温度近达1 000 ℃,晶化时间长达数小时。金属诱导法通过金属与非晶硅直接接触,促使Si与金属在400~600 ℃的低温条件下形成离子键,弱化了界面处的Si-Si键,为纳米晶硅提供成核位点,有效降低了纳米晶硅的晶化温度并缩短晶化时间。同时,不同诱导金属(如Ni、Pt、Pd、Cu、Au、Al和Ag)与界面处Si原子的结合方式不同,诱导非晶硅晶化的机制和晶化效果不同。基于此,本文归纳汇总了Ni、Al、Cu、Au、Co几种常见金属以及Ag-Cu和Ni-Cu两种合金诱导a-Si晶化的诱导机制、诱导特征及晶化条件,可为纳米晶硅薄膜的制备工艺提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宁
马晓波
侯毅
郑富
曹志杰
关键词:  金属诱导法  非晶硅  纳米晶硅薄膜  低温诱导    
Abstract: Nanocrystalline silicon has been widely investigated in the field of photovoltaic and light-emitting semiconductors, due to it's unique quantum confinement effect. Nanocrystalline silicon usually prepared by annealing amorphous silicon under at high temperatures around 1 000 ℃ for several hours. This atmospherically breaks the Si-Si covalent bond and further forms nanocrystalline silicon local nucleation in amorphous silicon. By contrast, the nanocrystalline silicon was prepared by metal-induced method at a lower temperatures nearly 400—600 ℃. The ionic bond between a silicon atom and a metal atom, which provide the nucleation sites for the nc-Si local nucleation in amorphous silicon, and then the crystallization temperature and time of the nanocrystalline silicon are effectively reduced. In this review, the crystallization mechanisms and the crystallization effects of different metals, such as Ni, Al, Cu, Au, Co, Ag-Cu and Ni-Cu alloys, are described in detail and comparatively analyzed. The results can provide useful references for the preparation of nanocrystalline silicon thin films.
Key words:  metal induction method    amorphous silicon    nanocrystalline silicon thin film    low temperature induction
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(12164035;11964027); 宁夏自然科学基金(2022AAC03067);宁夏重点研发计划(2018BEE03002);第四批宁夏青年科技人才托举工程(TJGC2019002)
通讯作者:  *马晓波,宁夏大学物理与电子电气工程学院讲师、硕士研究生导师。2017年6月于北京航空航天大学获得凝聚态物理专业博士学位。上海交通大学材料科学与工程专业进站博士后。研究方向为光伏材料与器件。现主持国家自然科学基金项目1项、自治区重点研发计划一般项目1项、自治区自然科学基金1项、教育部产学研项目1项、中色东方集团合作横向科研课题1项,并入选第四批“宁夏青年人才托举工程”。截止目前发表科研论文10余篇,其中SCI收录5篇,EI收录论文2篇;申请专利3项,已授权发明专利2项。maxiaobo@nxu.edu.cn   
作者简介:  王宁,2021年6月于河南师范大学新联学院获得理学学士学位。现为宁夏大学物理与电子电气工程学院硕士研究生,在马晓波老师的指导下进行研究。目前主要研究领域为光伏材料与器件。
引用本文:    
王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
WANG Ning, MA Xiaobo, HOU Yi, ZHENG Fu, CAO Zhijie. Research Progress on Metal-induced Preparation of Nanocrystalline Silicon Thin Films. Materials Reports, 2023, 37(21): 22050080-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050080  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22050080
1 Mukhopadhyay S, Chowdhury A, Ray S. Thin Solid Films, 2008, 516(20), 6824.
2 Chen C Z, Fang J W, Lin X Y. Journal of Zhejiang Normal University (Natural Science Edition), 2002, 25(3), 246 (in Chinese).
陈城钊, 方健文, 林璇英. 浙江师范大学学报(自然科学版), 2002, 25(3), 246.
3 Deng Z C, Ma N, Chu L Z, et al. Journal of Hebei University (Natural Science Edition), 2008, 28(6), 592 (in Chinese).
邓泽超, 马娜, 褚立志, 等. 河北大学学报(自然科学版), 2008, 28(6), 592.
4 Liu C Z, Yang B L, Li M J, et al. Chinese Journal of Liquid Crystals and Displays, 2000, 15(1), 46 (in Chinese).
刘传珍, 杨柏梁, 李牧菊, 等. 液晶与显示, 2000, 15(1), 46.
5 Van Gestel D, Gordon I, Poortmans J. Solar Energy Materials and Solar Cells, 2013, 119, 261.
6 Zhao Y, Wang J, Hu Q, et al. Crystal growth, 2010, 312(24), 3599.
7 Oki F, Ogawa Y, Fujiki Y. Japanese Journal of Applied Physics, 1969, 8(8), 1056.
8 Toko K, Kurosawa M, Saitoh N, et al. Applied Physics Letters, 2012, 101(7), 072106.
9 Knaepen W, Gaudet S, Detavernier C, et al. Journal of Applied Physics, 2009, 105(8), 083532.
10 Higashi H, Kudo K, Yamamoto K, et al. Journal of Applied Physics, 2018, 123(21), 215704.
11 Singh C K, Amaladass E P, Parida P K, et al. Applied Surface Science, 2021, 541, 148679.
12 Park J H, Suzuki T, Kurosawa M, et al. Applied Physics Letters, 2013, 103(8), 082102.
13 Sadoh T, Kurosawa M, Hagihara T, et al. Electrochemical and Solid-State Letters, 2011, 14(7), H274.
14 Hekmatshoar B, Mohajerzadeh S, Shahrjerdi D, et al. Applied Physics Letters, 2004, 85(6), 1054.
15 Ko Y D, Kang J G, Lee G H, et al. Nanoscale, 2011, 3(8), 3371.
16 Toko K, Oya N, Saitoh N, et al. Applied Physics Letters, 2015, 106(8), 082109.
17 Bosnell J R, Voisey U C. Thin Solid Films, 1970, 6(3), 161.
18 Herd S R, Chaudhari P, Brodsky M H. Journal of Non-Crystalline Solids, 1972, 7(4), 309.
19 Ottaviani G, Sigurd D, Marrello V, et al. Science, 1973, 180, 948.
20 Sigurd D, Ottaviani G, Arnal H J, et al. Journal of Applied Physics, 1974, 45, 1740
21 Mohiddon M A, Krishna M G, Dalba G, et al. Materials Science and Engineering B, 2012, 177(13), 1108.
22 Gall S, Muske M, Sieber I, et al. Journal of Non-Crystalline Solids, 2002, 299, 741.
23 Xu M, Xia D L, Yang S, et al. Vacuum, 2006, 43(4), 16 (in Chinese).
徐慢, 夏冬林, 杨晟, 等. 真空, 2006, 43(4), 16.
24 Pereira L, Aguas H, Martins R M, et al. Journal of Non-crystalline Solids, 2004, 338, 178.
25 Mengucci P, Barucca G, D'Anna E, et al. Applied Surface Science, 1999, 138, 145.
26 Knaepen W, Detavernier C, Van Meirhaeghe R L, et al. Thin Solid Films, 2008, 516(15), 4946.
27 Parditka B, Zaka H, Erdélyi G, et al. Scripta Materialia, 2018, 149, 36.
28 Matsumura R, Wang Y, Jevasuwan W, et al. Materials Letters, 2019, 252, 100.
29 Shekoofa O, Wang J, Li D, et al. Solar Energy, 2018, 173, 539.
30 Cui D Q. Metal-induced amorphous silicon crystallization of Ni/Si and Cu/Si thin-film systems. Shantou University, 2017 (in Chinese).
崔东庆. Ni/Si和Cu/Si薄膜系统的金属诱导非晶硅晶化研究. 硕士学位论文, 汕头大学, 2017.
31 Xia D L, Yang S, Xu M, et al. Photographic Science and Photochemistry, 2006, 24(2), 87 (in Chinese).
夏冬林, 杨晟, 徐慢, 等. 感光科学与光化学, 2006, 24(2), 87.
32 Wang Z M, Zhang A, Chen Y Y, et al. Acta Metallurgica Sinica, 2020, 56(1), 66 (in Chinese).
王祖敏, 张安, 陈媛媛, 等. 金属学报, 2020, 56(1), 66.
33 Xia D L, Yang S, Zhao X J. Nanotechnology, 2005, 2(5), 384 (in Chinese).
夏冬林, 杨晟, 赵修建. 纳米科技, 2005, 2(5), 384.
34 He D, Wang J Y, Mittemeijer E J. Journal of Applied Physics, 2005, 97(9), 093524.
35 He D, Wang J Y, Mittemeijer E J. Journal of Applied Physics A, 2005, 80(3), 501.
36 Wang J Y, He D, Zhao Y H, et al. Journal of Applied Physics Letters, 2006, 88(6), 061910.
37 Wang J Y, Wang Z M, Mittemeijer E J. Journal of Applied Physics, 2007, 102(11), 113523.
38 Wang Z, Jeurgens L P H, Wang J Y, et al. Advanced Engineering Materials, 2009, 11(3), 131.
39 Wang Z M, Wang J Y, Jeurgens L P H, et al. Physical Review Letters, 2008, 100(12), 125503.
40 Wang Z M, Wang J Y, Jeurgens L P H, et al. Physical Review, 2008, 77(4), 045424.
41 Wang Z M, Wang J Y, Jeurgens L P H, et al. Surface and Interface Analysis, 2008, 40(3-4), 427.
42 Wang Z M, Wang J Y, Jeurgens L P H, et al. Scripta materialia, 2006, 55(11), 987.
43 Wang J Y, Zalar A, Zhao Y H, et al. Thin Solid Films, 2003, 433(1-2), 92.
44 Wang Z M, Gu L, Jeurgens L P H, et al. Journal of Materials science, 2011, 46(12), 4314.
45 Wang Z M, Gu L, Jeurgens L P H, et al. Nano Letters, 2012, 12(12), 6126.
46 Hekmatshoar B, Shahrjerdi D, Mohajerzadeh S, et al. Journal of Vacuum Science and Technology A, 2003, 21(3), 752.
47 Sohn D K, Lee J N, Kang S W K S W, et al. Journal of Applied Physics, 1996, 35(2S), 1005.
48 Jin Z, Bhat G A, Yeung M, et al. Journal of Applied Physics, 1998, 84(1), 194.
49 Yoon S Y, Kim K H, Kim C O, et al. Journal of Applied Physics, 1997, 82(11), 5865.
50 Kim K H, Park S J, Kim S H, et al. Journal of Non-Crystalline Solids, 2006, 352(9-20), 976.
51 Jang J, Oh J Y, Kim S K, et al. Nature, 1998, 395(6701), 481.
52 Kurosawa M, Kawabata N, Sadoh T, et al. Applied Physics Letters, 2009, 95(13), 132103.
53 Radnoczi G, Robertsson A, Hentzell H T G, et al. Journal of Applied Physics, 1991, 69(9), 6394.
54 Hultman L, Robertsson A, Hentzell H T G, et al. Journal of Applied Physics, 1987, 62(9), 3647.
55 Aono M, Takahashi M, Takiguchi H, et al. Journal of Non-crystalline solids, 2012, 358(17), 2150.
56 Herd S R, Chaudhari P, Brodsky M H. Journal of Non-Crystalline Solids, 1972, 7(4), 309.
57 Guliants E A, Anderson W A, Guo L P, et al. Thin Solid Films, 2001, 385(1-2), 74.
58 Liu C Z, Yang B L, Li M J, et al. Journal of Natural Science of Jilin University, 2000(3), 45 (in Chinese).
刘传珍, 杨伯梁, 李牧菊, 等. 吉林大学自然科学学报, 2000(3), 45.
59 Feng J Y, He Y, Bi L. Journal of Jiangsu University (Natural Science Eidtion), 2007, 28(2), 123 (in Chinese).
冯嘉猷, 何悦, 毕磊. 江苏大学学报(自然科学版) , 2007, 28(2), 123.
60 Kim H Y, Seok K H, Chae H J, et al. Solid-State Electronics, 2017, 132, 73.
61 Nast O, Wenham S R. Journal of Applied Physics, 2000, 88(1), 124.
62 Wang L Y. Modern Chemical Research, 2020(6), 40 (in Chinese).
王丽云. 当代化工研究, 2020(6), 40 (in Chinese).
63 Kim H, Kim D, Lee G, et al. Solar Energy Materials and Solar Cells, 2002, 74(1-4), 323.
64 Xia D L, Hao J B, Jiang H, et al. Journal of WuHan University of Technology, 2007, 260 (in Chinese).
夏冬林, 郝江波, 姜宏, 等. 武汉理工大学学报, 2007, 29, 260.
65 Gordon I, Carnel L, Van Gestel D, et al. Progress in Photovoltaics:Research and Applications, 2007, 15(7), 575.
66 Parditka B, Verezhak M, Balogh Z, et al. Acta Materialia, 2013, 61(19), 7173.
67 Becker C, Ruske F, Sontheimer T, et al. Journal of Applied Physics, 2009, 106(8), 084506.
68 Zamchiy A O, Baranov E A, Starinskiy S V, et al. Vacuum, 2021, 192, 110462.
69 Lee B J. Journal of Materials Research, 1999, 14(3), 1002.
70 Miura H, Ma E, Thompson C V. Journal of Applied Physics, 1991, 70(8), 4287.
71 Holloway K, Sinclair R, Nathan M. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1989, 7(3), 1479.
72 Nathan M. Journal of Applied Physics, 1988, 63(11), 5534.
73 Shim J Y, Kwak J S, Baik H K. Thin Solid Films, 1996, 288(1-2), 309.
74 Ahn J S, Yoon Y G, Kim D, et al. Thin Solid Films, 2013, 542, 426.
75 Widenborg P I, Aberle A G. Journal of Crystal Growth, 2002, 242(3-4), 270.
76 Kim J C, Choi J H, Kim S S, et al. Applied Physics Letters, 2003, 83(24), 5068.
77 Rehman A U, Lee S H. Materials, 2014, 7(2), 1318.
78 Chen C C, Yang B C, Lee S C. Journal of Vacuum Science and Technology B, 2005, 23(2), 513.
[1] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed