Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21110002-8    https://doi.org/10.11896/cldb.21110002
  金属与金属基复合材料 |
边缘修饰对锗烯纳米带电子结构的影响
孙翠翠1,*, 毕舰镭2
1 山东交通学院材料科学与工程系,济南 250300
2 北京工业大学材料与制造学部,北京 100124
Influence of Edge Modification on the Electronic Structure of Germanene Nanoribbons
SUN Cuicui1,*, BI Jianlei2
1 Department of Materials Science and Engineering, Shandong Jiaotong University, Jinan 250300, China
2 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 16791KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用第一性原理研究了氢化效应对扶手椅型锗烯纳米带(AGeNRs)几何结构和电子结构的影响,分别计算了几何结构与稳定性、能带结构以及态密度,研究了形成能和能带结构随各种带宽度函数的变化。通过增加带的宽度,AGeNRs的带隙尺寸根据三种不同的趋势减小。基于这些趋势,可以将其分为三类,分别命名为N=3P、N=3P+1、N=3P+2,N是宽度上的锗原子数,P是整数。研究表明,裸露边缘的AGeNRs稳定性较低,氢化处理可以提高纳米带的稳定性,其中双氢化结构的稳定性最高。其次,边缘利用H原子进行修饰后,电荷密度发生转移,整个材料的电子和光学特性发生变化,说明边缘效应影响其电学和光学性质。对于裸露边缘和单氢化方式,其带隙符合N=3P+2>N=3P>N=3P+1;而对于双氢化处理和单氢化-双氢化的混合结构,其带隙符合N=3P>N=3P+1>N=3P+2。由于纳米带都是直接带隙,可以推测此类AGeNRs可能适用于光学领域,而且其电子和光学性质可以通过纳米带宽度以及氢化方式在很宽的范围内进行调节。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙翠翠
毕舰镭
关键词:  锗烯  电子结构  氢化效应  第一性原理    
Abstract: In this work, first-principles calculations were used to study the effect of hydrogenation on the geometric structure and electronic structure of armchair germanene nanoribbons (AGeNRs). The stability, band structures and density of states were calculated, respectively. The changes of these parameters as a function of various band widths were studied. By increasing the width of the nanoribbons, the band gap size of AGeNRs decreases according to three different trends. Based on these trends, they can be divided into three categories, named N=3P, N=3P+1, and N=3P+2, where N is the number of germanium atoms in the width, and P is an integer. The study found that the stability of the bared edges of AGeNRs is low, and the hydrogenation treatment can improve the stability of the nanoribbons, and the double hydrogenation structure has the highest stability. Secondly, after the edge is modified with H atoms, the charge density is transferred, which changes the electronic and optical properties of the materials, indicating that the edge effect affects its electrical and optical properties. For bare edges and single hydrogenation methods, the band gap conforms to N=3P+2>N=3P>N=3P+1, while for double hydrogenation and single hydrogenation-double hydrogenation mixed structures, the band gap conforms to N=3P>N=3P+1>N=3P+2. Since the nanoribbons are all direct band gaps, it could be speculated that such AGeNRs may be suitable for optical applications, and their electronic and optical properties can be adjusted in a wide range by the width of the nanoribbons and the hydrogenation method.
Key words:  germanene    electronic structure    hydrogenation effect    first principles calculation
出版日期:  2023-07-10      发布日期:  2023-07-10
ZTFLH:  O472  
基金资助: 山东交通学院博士科研启动基金项目(BS50004943);山东交通学院校级科研基金项目(Z201916)
通讯作者:  *孙翠翠,山东交通学院讲师。2016年在哈尔滨理工大学获得硕士学位,2019年6月毕业于哈尔滨理工大学,获得材料物理与化学专业博士学位。主要从事新型纳米材料光、电、磁性质的理论研究。以第一作者或主要作者在Physical Chemistry Chemical Physics、New Journal of Chemistry、RSC Advances、Journal of Optoelectronics and Advanced Materials期刊发表论文10余篇。554012575@qq.com   
引用本文:    
孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
SUN Cuicui, BI Jianlei. Influence of Edge Modification on the Electronic Structure of Germanene Nanoribbons. Materials Reports, 2023, 37(13): 21110002-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21110002  或          https://www.mater-rep.com/CN/Y2023/V37/I13/21110002
1 Dávila M E, Le Lay G. Scientific Reports, 2016, 6, 20714.
2 Ye X S, Shao Z G, Zhao H, et al. RSC Advance, 2014, 4, 21216.
3 Roome N J, Carey J D. ACS Applied Materials & Interfaces, 2014, 6(10), 7743.
4 Nijamudheen A, Bhattacharjee R, Choudhury S, et al. Journal of Physics Chemistry C, 2015, 119(7), 3802.
5 Katsnelson M I, Fasolino A. Accounts of Chemical Research, 2013, 46(1), 97.
6 Boettger J C, Trickey S B. Physics Review B, 2007, 75, 121402.
7 Gmitra M, Konschur S, Ertler C, et al. Physics Review B, 2009, 80, 235431
8 Abdelouahed S, Ernst A, Henk J, et al. Physics Review B, 2010, 82, 125424.
9 Liu C C, Feng W, Yao Y. Physics Review Letters, 2011, 107, 076802.
10 Ye X S, Shao Z G, Zhao H, et al. RSC Advances, 2014, 4, 21216.
11 Li L, Lu S, Pan J, et al. Advanced Materials, 2014, 26(28), 4820.
12 Derivaz M, Dentel D, Stephan R, et al. Nano Letters, 2015, 15(4), 2510.
13 Wang W, Uhrberg R I G. Journal of Nanotechnology, 2017, 8(1), 1946.
14 Qin Z, Pan J, Lu S, et al. Advanced Materials, 2017, 29(13), 1606046.
15 Zhuang J, Gao N, Li Z, et al. ACS Nano, 2017, 11(4), 3553.
16 Zhuang J, Liu C, Zhou Z, et al. Advanced Science, 2018, 5, 1800207.
17 Gou J, Zhong Q, Sheng S, et al. 2D Materials, 2016, 3, 045005.
18 Jiao Z, Yao Q, Rudenko A N, et al. Physical Review B, 2020, 102, 205419.
19 Xiang Y, Zheng J, Li C L, et al. Acta Physica Sinica, 2019, 68(18), 187302 (in Chinese).
相阳, 郑军, 李春雷, 等. 物理学报, 2019, 68(18), 187302.
20 Xiao M, Leng H, Song H, et al. Acta Physica Sinica, 2021, 70(6), 60 (in Chinese).
肖美霞, 冷浩, 宋海洋, 等. 物理学报, 2021, 70(6), 60.
21 Xie Y. Acta Physico-Chimica Sinica, 2020, 36(11), 2004059 (in Chinese).
谢毅. 物理化学学报, 2020, 36(11), 2004059.
22 Pisani L, Chan J A, Montanari B, et al. Physical Review B, 2007, 75, 064418.
23 Kudin K N. ACS Nano, 2008, 2, 516.
24 Wu F, Hu J, Yang Z. et al. Materials Reports, 2021, 35(18), 18012 (in Chinese).
吴方棣, 胡家朋, 杨自涛, 等. 材料导报, 2021, 35(18), 18012.
25 Zhong G, Wang L, Yang W, et al. Materials Reports, 2021, 35(Z1), 15 (in Chinese).
仲光洪, 汪丽莉, 杨稳, 等. 材料导报, 2021, 35(Z1), 15.
26 Jing S, Chen W, Pan J, et al. Materials Science in Semiconductor Processing, 2022, 146, 106673.
27 Sun C, Wang Y, Yang Z D, et al. New Journal of Chemistry, 2020, 44(25), 10507.
28 Agrawal S, Kaushal G, Srivastava A. MRS Advances, 2021, 6(30), 723.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[3] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[4] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[5] 白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
[6] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[7] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[8] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[9] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[10] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[11] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[12] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[13] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[14] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[15] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed