Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21110002-8    https://doi.org/10.11896/cldb.21110002
  金属与金属基复合材料 |
边缘修饰对锗烯纳米带电子结构的影响
孙翠翠1,*, 毕舰镭2
1 山东交通学院材料科学与工程系,济南 250300
2 北京工业大学材料与制造学部,北京 100124
Influence of Edge Modification on the Electronic Structure of Germanene Nanoribbons
SUN Cuicui1,*, BI Jianlei2
1 Department of Materials Science and Engineering, Shandong Jiaotong University, Jinan 250300, China
2 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 16791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用第一性原理研究了氢化效应对扶手椅型锗烯纳米带(AGeNRs)几何结构和电子结构的影响,分别计算了几何结构与稳定性、能带结构以及态密度,研究了形成能和能带结构随各种带宽度函数的变化。通过增加带的宽度,AGeNRs的带隙尺寸根据三种不同的趋势减小。基于这些趋势,可以将其分为三类,分别命名为N=3P、N=3P+1、N=3P+2,N是宽度上的锗原子数,P是整数。研究表明,裸露边缘的AGeNRs稳定性较低,氢化处理可以提高纳米带的稳定性,其中双氢化结构的稳定性最高。其次,边缘利用H原子进行修饰后,电荷密度发生转移,整个材料的电子和光学特性发生变化,说明边缘效应影响其电学和光学性质。对于裸露边缘和单氢化方式,其带隙符合N=3P+2>N=3P>N=3P+1;而对于双氢化处理和单氢化-双氢化的混合结构,其带隙符合N=3P>N=3P+1>N=3P+2。由于纳米带都是直接带隙,可以推测此类AGeNRs可能适用于光学领域,而且其电子和光学性质可以通过纳米带宽度以及氢化方式在很宽的范围内进行调节。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙翠翠
毕舰镭
关键词:  锗烯  电子结构  氢化效应  第一性原理    
Abstract: In this work, first-principles calculations were used to study the effect of hydrogenation on the geometric structure and electronic structure of armchair germanene nanoribbons (AGeNRs). The stability, band structures and density of states were calculated, respectively. The changes of these parameters as a function of various band widths were studied. By increasing the width of the nanoribbons, the band gap size of AGeNRs decreases according to three different trends. Based on these trends, they can be divided into three categories, named N=3P, N=3P+1, and N=3P+2, where N is the number of germanium atoms in the width, and P is an integer. The study found that the stability of the bared edges of AGeNRs is low, and the hydrogenation treatment can improve the stability of the nanoribbons, and the double hydrogenation structure has the highest stability. Secondly, after the edge is modified with H atoms, the charge density is transferred, which changes the electronic and optical properties of the materials, indicating that the edge effect affects its electrical and optical properties. For bare edges and single hydrogenation methods, the band gap conforms to N=3P+2>N=3P>N=3P+1, while for double hydrogenation and single hydrogenation-double hydrogenation mixed structures, the band gap conforms to N=3P>N=3P+1>N=3P+2. Since the nanoribbons are all direct band gaps, it could be speculated that such AGeNRs may be suitable for optical applications, and their electronic and optical properties can be adjusted in a wide range by the width of the nanoribbons and the hydrogenation method.
Key words:  germanene    electronic structure    hydrogenation effect    first principles calculation
发布日期:  2023-07-10
ZTFLH:  O472  
基金资助: 山东交通学院博士科研启动基金项目(BS50004943);山东交通学院校级科研基金项目(Z201916)
通讯作者:  *孙翠翠,山东交通学院讲师。2016年在哈尔滨理工大学获得硕士学位,2019年6月毕业于哈尔滨理工大学,获得材料物理与化学专业博士学位。主要从事新型纳米材料光、电、磁性质的理论研究。以第一作者或主要作者在Physical Chemistry Chemical Physics、New Journal of Chemistry、RSC Advances、Journal of Optoelectronics and Advanced Materials期刊发表论文10余篇。554012575@qq.com   
引用本文:    
孙翠翠, 毕舰镭. 边缘修饰对锗烯纳米带电子结构的影响[J]. 材料导报, 2023, 37(13): 21110002-8.
SUN Cuicui, BI Jianlei. Influence of Edge Modification on the Electronic Structure of Germanene Nanoribbons. Materials Reports, 2023, 37(13): 21110002-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110002  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21110002
1 Dávila M E, Le Lay G. Scientific Reports, 2016, 6, 20714.
2 Ye X S, Shao Z G, Zhao H, et al. RSC Advance, 2014, 4, 21216.
3 Roome N J, Carey J D. ACS Applied Materials & Interfaces, 2014, 6(10), 7743.
4 Nijamudheen A, Bhattacharjee R, Choudhury S, et al. Journal of Physics Chemistry C, 2015, 119(7), 3802.
5 Katsnelson M I, Fasolino A. Accounts of Chemical Research, 2013, 46(1), 97.
6 Boettger J C, Trickey S B. Physics Review B, 2007, 75, 121402.
7 Gmitra M, Konschur S, Ertler C, et al. Physics Review B, 2009, 80, 235431
8 Abdelouahed S, Ernst A, Henk J, et al. Physics Review B, 2010, 82, 125424.
9 Liu C C, Feng W, Yao Y. Physics Review Letters, 2011, 107, 076802.
10 Ye X S, Shao Z G, Zhao H, et al. RSC Advances, 2014, 4, 21216.
11 Li L, Lu S, Pan J, et al. Advanced Materials, 2014, 26(28), 4820.
12 Derivaz M, Dentel D, Stephan R, et al. Nano Letters, 2015, 15(4), 2510.
13 Wang W, Uhrberg R I G. Journal of Nanotechnology, 2017, 8(1), 1946.
14 Qin Z, Pan J, Lu S, et al. Advanced Materials, 2017, 29(13), 1606046.
15 Zhuang J, Gao N, Li Z, et al. ACS Nano, 2017, 11(4), 3553.
16 Zhuang J, Liu C, Zhou Z, et al. Advanced Science, 2018, 5, 1800207.
17 Gou J, Zhong Q, Sheng S, et al. 2D Materials, 2016, 3, 045005.
18 Jiao Z, Yao Q, Rudenko A N, et al. Physical Review B, 2020, 102, 205419.
19 Xiang Y, Zheng J, Li C L, et al. Acta Physica Sinica, 2019, 68(18), 187302 (in Chinese).
相阳, 郑军, 李春雷, 等. 物理学报, 2019, 68(18), 187302.
20 Xiao M, Leng H, Song H, et al. Acta Physica Sinica, 2021, 70(6), 60 (in Chinese).
肖美霞, 冷浩, 宋海洋, 等. 物理学报, 2021, 70(6), 60.
21 Xie Y. Acta Physico-Chimica Sinica, 2020, 36(11), 2004059 (in Chinese).
谢毅. 物理化学学报, 2020, 36(11), 2004059.
22 Pisani L, Chan J A, Montanari B, et al. Physical Review B, 2007, 75, 064418.
23 Kudin K N. ACS Nano, 2008, 2, 516.
24 Wu F, Hu J, Yang Z. et al. Materials Reports, 2021, 35(18), 18012 (in Chinese).
吴方棣, 胡家朋, 杨自涛, 等. 材料导报, 2021, 35(18), 18012.
25 Zhong G, Wang L, Yang W, et al. Materials Reports, 2021, 35(Z1), 15 (in Chinese).
仲光洪, 汪丽莉, 杨稳, 等. 材料导报, 2021, 35(Z1), 15.
26 Jing S, Chen W, Pan J, et al. Materials Science in Semiconductor Processing, 2022, 146, 106673.
27 Sun C, Wang Y, Yang Z D, et al. New Journal of Chemistry, 2020, 44(25), 10507.
28 Agrawal S, Kaushal G, Srivastava A. MRS Advances, 2021, 6(30), 723.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[3] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[4] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[5] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[6] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[7] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[8] 孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
[9] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[10] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[11] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[12] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[13] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[14] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[15] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed