Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 23080043-5    https://doi.org/10.11896/cldb.23080043
  金属与金属基复合材料 |
三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究
白雪1,2, 文杜林1,2, 王云杰1,2, 苟杰1,2, 苏欣1,2,*
1 伊犁师范大学物理科学与技术学院,新疆 伊宁 835000
2 伊犁师范大学物理科学与技术学院新疆凝聚态相变与微结构实验室,新疆 伊宁 835000
First Principles Study on the Electronic Structure and Mechanical Properties of Ternary Mixed Crystal AlP1-xAsx (x=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1)
BAI Xue1,2, WEN Dulin1,2, WANG Yunjie1,2, GOU Jie1,2, SU Xin1,2,*
1 College of Physical Science and Technology, Yili Normal University, Yining 835000, Xinjiang, China
2 Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, Xinjiang, China
下载:  全 文 ( PDF ) ( 8118KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为深入研究As取代AlP晶体中P之后体系的电子结构和力学性能,基于密度泛函第一性原理,本工作系统地比较了半导体材料AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)在不同掺杂浓度下的电子结构和力学性能。对数据的分析表明,通过调整As原子浓度可以优化电子结构和力学性能,这有助于新型半导体材料的开发。无论AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)晶体的浓度如何,化合物内部键的强共价性都极大地促进了结构的稳定性。这对实验化合物合成的理论指导具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白雪
文杜林
王云杰
苟杰
苏欣
关键词:  掺杂  三元混晶  电子结构  力学性质  第一性原理    
Abstract: To go deeply into the electronic structure and mechanical properties of As replaces P in AlP crystals, the electronic structure and mechanical properties of semiconductor material AlP1-xAsx(x=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) at different doping concentrations have been systematically compared based on the first principle of density functional. The analysis of the data reveals that the electronic structure as well as the mechanical properties can be optimized by adjusting the atomic concentration of As. This facilitates the development of new semiconductor materials. This facilitates the development of new semiconductor materials, and the strong covalent nature of the bonds within the compounds, irrespective of the concentration of AlP1-xAsx(x=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1) crystals, contributes significantly to the stability of the structures. It is of great significance for the theoretical guidance of the synthesis of experimental compounds.
Key words:  doped    ternary mixed crystal    electronic structure    mechanical property    first principle
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  O482  
基金资助: 新疆维吾尔自治区重点实验室开放课题(2023D04074);伊犁师范大学科研项目(22XKZZ21);新疆伊犁科技计划项目(YZ2022Y002);新疆维吾尔自治区天山英才计划第三期(2021-2023)
通讯作者:  *苏欣,博士、伊犁师范大学物理科学与技术学院副教授、硕士研究生导师。主要从事新型凝聚态功能材料(光电功能晶体材料等)设计及制备研究、第一性原理材料设计与模拟等方面的研究工作。suxin_phy@sina.com   
作者简介:  白雪,于伊犁师范大学攻读光学硕士学位。在苏欣副教授的指导下进行研究。目前主要研究领域为半导体材料的第一性原理计算。
引用本文:    
白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
BAI Xue, WEN Dulin, WANG Yunjie, GOU Jie, SU Xin. First Principles Study on the Electronic Structure and Mechanical Properties of Ternary Mixed Crystal AlP1-xAsx (x=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1). Materials Reports, 2025, 39(12): 23080043-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080043  或          https://www.mater-rep.com/CN/Y2025/V39/I12/23080043
1 Xue F S. Research & Progress of Solid State Electronics, 1987, 8(1), 9 (in Chinese).
薛舫时. 固体电子学研究与进展, 1987, 8(1), 9.
2 Zhou Q, Deng Q M. Journal of Chongqing University of Arts and Sciences, 2007, 26(6), 51 (in Chinese).
周清, 邓清梅. 重庆文理学院学报(自然科学版), 2007, 26(6), 51.
3 Liu G C, Lu Z W, Klein B M. Physical Review B-Condensed Matter and Materials Physics, 1995, 51(9), 5678.
4 Vurgaftman I, Meyer J R, Ram-Mohan L R. Journal of Applied Physics, 2001, 89(11), 5815.
5 Ketterson A A, Masselink W T, Gedymin J S, et al. Ieee Transactions on Electron Devices, 1986, 33(5), 564.
6 Zhou Q Journal of Southwest University (Natural Science Edition), 2009, 31(1), 27 (in Chinese).
周清. 西南大学学报(自然科学版), 2009, 31(1), 27.
7 Kulagin N E, Popkov A F, Zvezdin A K. Physics of the Solid State, 2011, 53(5), 970.
8 Shchepetilnikov A V, Frolov D D, Nefyodov Y A, et al. Journal of Experimental and Theoretical Physics Letters, 2018, 108(7), 481.
9 Germanis P, Atkinson S, Hostein R, et al. Physical Review Letters, 2020, 102(3), 035406.
10 Hirota K, Milster T D, Shimura K, et al. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39(2B), 968.
11 Liu C, Hu M, Luo K, et al. Computational Materials Science, 2016, 117, 496.
12 Huang L, Liu W L, Deng C S. Acta Physica Sinica, 2018, 67 (13), 136101 (in Chinese).
黄蕾, 刘文亮, 邓超生. 物理学报, 2018, 67(13), 136101.
13 Jivani A R, Trivedi H J, Gajjar P N, et al. Pramana-Journal of Physics, 2005, 64(1), 153.
14 Arbouche O, Belgoumène B, Soudini B, et al. Computational Materials Science, 2010, 47(3), 685.
15 Yang R, Zhu C, Wei Q, et al. Solid State Communications, 2017, 267, 23.
16 Soltani A, Taghartapeh R M, Mighani H, et al. Applied Surface Science, 2012, 259, 637.
17 Annane F, Meradji H, Ghemid S, et al. Computational Materials Science, 2010, 50(2), 274.
18 Teles L K, Furthmüller, J. Scolfaro L M R, et al. Physical Review B, 2000, 62(4), 2475.
19 Kaur K, Sharma S. Solid State Communications, 2020, 325(24), 114172.
20 Nagano M, Oishi Y, Ohnuma T. Japanese Journal of Applied Physics Part 2-Letters, 1999, 38(11A), L1272.
21 Leszczynski M, Micovic M, Mendonca C A C, et al. Crystal Research and Technology, 1992, 27(1), 97.
22 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1997, 78(7), 1396.
23 Benkraouda M, Amrane N. Journal of Alloys and Compounds, 2013, 546, 151.
24 Bobrov V B, Trigger S A. Technical Physics, 2018, 63(8), 1092.
25 Guo Y L, Jiao Z Y, Ma S H, et al. Journal of Atomic and Molecular Physics, 2013, 30(4), 670 (in Chinese).
郭永亮, 焦照勇, 马淑红, 等. 原子与分子物理学报, 2013, 30(4), 670.
26 Gou J, Xiong M Y, Zhang Z Y, et al. Journal of Atomic and Molecular Physics, 2024, 41(3), 188 (in Chinese).
苟杰, 熊明姚, 张志远, 等. 原子与分子物理学报, 2024, 41(3), 188.
28 Bechstedt F, Belabbes A. Journal of Physics-Condensed Matter, 2013, 25(27), 273201.
29 Yu S M, Wang J Q, Chen L, et al. Rare Metals, 2020, 44(11), 1177 (in Chinese).
于双淼, 王景芹, 陈令, 等. 稀有金属, 2020, 44(11), 1177.
30 Konstantinos K, Andreas J L. Journal of Physics-Condensed Matter, 2020, 32(31), 315502.
31 Becke A D, Edgecombe K E. Journal of Chemical Physics, 1990, 92(9), 5397.
32 Wang E G, Wang D S. Journal of Semiconductors, 1991, 12(3), 129(in Chinese).
王恩哥, 王鼎盛. 半导体学报, 1991, 12(3), 129.
33 Jiang J W, Park H S. Nature Communications, 2014, 5, 4727.
34 Wei Q, Peng X H. Applied Physics Letters, 2014, 104(25), 251915.
35 Wang L Q, Kutana A, Zou X L, et al. Nanoscale, 2015, 7(21), 9746.
36 Kou L Z, Chen C F, Smith S C. Journal of Physical Chemistry Letters, 2015, 6(14), 2794.
37 Hao F, Chen X. Journal of Applied Physics, 2015, 118(23), 234304.
38 Mott P H, Roland C M. Physical Review B, 2009, 80(13), 132104.
39 Rouxel T. Journal of the American Ceramic Society, 2007, 90(10), 3019.
40 W. F.H., Briden P W. American Mineralogist, 1929, 14 (10), 385.
41 Reuss A. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1), 49.
42 Pugh S F. Philosophical Magazine, 1954, 45(367), 823.
[1] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[2] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[3] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[4] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[5] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[6] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[7] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[8] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[9] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[10] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[11] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[12] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[13] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[14] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[15] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed