Co-N-C Nanosheet Anchored on N-doped Carbon Nanofiber for Oxygen Reduction Reaction
DONG Mengjiao1, XU Yangyang1,*, LI Jingshan1, YE Yipeng1, LI Bingxin2, CHEN Haotian2
1 Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 451100, China 2 College of International Education, Zhongyuan University of Technology, Zhengzhou 451100, China
摘要 构建低成本、高性能的非贵金属催化剂对促进燃料电池的发展具有重要意义。本研究通过静电纺丝技术和溶剂热反应法,在纳米纤维上负载Co(OH)2纳米片,并以之为硬模板转化为ZIF-67纳米片,接着采用高温热处理法,获得氮掺杂碳纳米纤维(NCNF)负载Co-N-C纳米片(Co-NS)的非贵金属催化剂。基于高导电的NCNF、丰富的Co-N-C活性物种和纳米片阵列结构优势,NCNF/Co-NS催化剂具有极好的氧还原(ORR)动力学。测试结果表明,在0.1 mol/L KOH溶液中,NCNF/Co-NS催化剂的起始电位和半波电位分别为0.9 V vs.RHE和0.83 V vs.RHE,可与Pt/C(0.92 V vs.RHE,0.85 V vs.RHE)媲美,并表现出远高于Pt/C的电化学稳定性和耐甲醇性能,使其在能源领域具有广阔的应用前景。
Abstract: The exploitation of low cost and high performance non-precious metal catalyst is of great significance to promote the development of fuel cells. In this work, Co(OH)2 nanosheets anchored on nanofiber were prepared by electrospinning technology and solvothermal reaction method, and the Co(OH)2 nanosheets as the hard template was converted to ZIF-67 nanosheets. Then, Co-N-C nanosheets (Co-NS) anchored on the nitrogen-doped carbon nanofibers (NCNF) were obtained by high temperature heat treatment method, which were non-precious metal catalysts for ORR. Based on the advantages of highly conductive NCNF, abundant Co-N-C active species and nanosheet array structure, NCNF/Co-NS has excellent ORR dynamics. Test results show that NCNF/Co-NS catalysts in 0.1 mol/L KOH solution, are comparable to Pt/C (0.92 V vs.RHE, 0.85 V vs.RHE) in terms of the initial potential, half-wave potential (0.9 V vs.RHE, 0.83 V vs.RHE). Moreover, the electrochemical stability and methanol resistance of NCNF/Co-NS are much higher than Pt/C. In summary, NCNF/Co-NS has a broad application prospect in the field of energy.
1 Ma L, Chen S, Pei Z, et al. ACS Nano, 2018, 12, 1949. 2 Qin X, Wang Z, Han J, et al. Chemical Communications, 2018, 54, 7693. 3 Li Z, Ji S, Wang C, et al. Advanced Materials, 2023, 35, 2300905. 4 Zang Y, Zhang H, Zhang X, et al. Nano Research, 2016, 9, 2123. 5 Byeon A, Yun W C, Kim J M, et al. ChemElectroChem, 2023, 10, e202300234. 6 Cao T, Dai X, Fu Y, et al. Applied Surface Science, 2023, 607, 155055. 7 Jiang S, Tian K, Li X, et al. Journal of Colloid and Interface Science, 2022, 606, 635. 8 Xie X, Peng H, Ma G, et al. Materials Chemistry Frontiers, 2023, 7, 2595. 9 Zhao S, Ma Z, Wan Z, et al. Journal of Colloid and Interface Science, 2023, 642, 800. 10 Huang Y, Chen Y, Xu M, et al. Materials Today, 2023, 69, 66. 11 Peng R, Zhao Z, Sun H, et al. Chinese Journal of Chemistry, 2023, 41, 710. 12 Hao Y, Hu F, Chen Y, et al. Advanced Fiber Materials, 2022, 4, 185. 13 Wu M, Wang Y, Wei Z, et al. Journal of Materials Chemistry A, 2018, 6, 10918. 14 Hou C C, Zou L, Wang Y, et al. Angewandte Chemie International Edition, 2020, 59, 21360. 15 Wang Y, Li Z, Zhang P, et al. Nano Energy, 2021, 87, 106147. 16 Raju P, Ramalingam T, Nooruddin T, et al. Journal of Drug Delivery Science and Technology, 2020, 56, 101560. 17 Huang M, Liu W, Wang L, et al. Nano Research, 2020, 13, 810. 18 Sun X, Xu T, Sun W, et al. Journal of Alloys and Compounds, 2022, 898, 162778. 19 Li Y, Hu Z, Sheng M, et al. International Journal of Hydrogen Energy, 2023, 48, 36795. 20 Gu C, Li J, Liu J P, et al. Applied Catalysis B:Environmental, 2021, 286, 119888. 21 Li M, Yang Q, Fan L, et al. ACS Applied Materials & Interfaces, 2023, 15, 39448. 22 Pei W, Zhang J, Tong H, et al. Applied Catalysis B:Environmental, 2021, 282, 119575. 23 Shooshtari G H, Rezaei M. ACS Applied Materials & Interfaces, 2023, 15, 34682. 24 Wang L, Bai X, Wen B, et al. Composites Part B:Engineering, 2019, 166, 464. 25 Lei H, Cui M, Huang Y. ACS Applied Materials & Interfaces, 2022, 14, 34793. 26 Manimegalai M, Annaraj J. Materials Research Express, 2022, 9, 025002.