Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040222-7    https://doi.org/10.11896/cldb.24040222
  金属与金属基复合材料 |
氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应
董梦娇1, 徐洋洋1,*, 李净珊1, 叶仪鹏1, 李秉芯2, 陈昊天2
1 中原工学院纺织服装产业研究院,郑州 451100
2 中原工学院国际教育学院,郑州 451100
Co-N-C Nanosheet Anchored on N-doped Carbon Nanofiber for Oxygen Reduction Reaction
DONG Mengjiao1, XU Yangyang1,*, LI Jingshan1, YE Yipeng1, LI Bingxin2, CHEN Haotian2
1 Research Institute of Textile and Clothing Industries, Zhongyuan University of Technology, Zhengzhou 451100, China
2 College of International Education, Zhongyuan University of Technology, Zhengzhou 451100, China
下载:  全 文 ( PDF ) ( 31359KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 构建低成本、高性能的非贵金属催化剂对促进燃料电池的发展具有重要意义。本研究通过静电纺丝技术和溶剂热反应法,在纳米纤维上负载Co(OH)2纳米片,并以之为硬模板转化为ZIF-67纳米片,接着采用高温热处理法,获得氮掺杂碳纳米纤维(NCNF)负载Co-N-C纳米片(Co-NS)的非贵金属催化剂。基于高导电的NCNF、丰富的Co-N-C活性物种和纳米片阵列结构优势,NCNF/Co-NS催化剂具有极好的氧还原(ORR)动力学。测试结果表明,在0.1 mol/L KOH溶液中,NCNF/Co-NS催化剂的起始电位和半波电位分别为0.9 V vs.RHE和0.83 V vs.RHE,可与Pt/C(0.92 V vs.RHE,0.85 V vs.RHE)媲美,并表现出远高于Pt/C的电化学稳定性和耐甲醇性能,使其在能源领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董梦娇
徐洋洋
李净珊
叶仪鹏
李秉芯
陈昊天
关键词:  非贵金属催化剂  氧还原反应  氮掺杂碳纳米纤维  钴-氮-碳  静电纺丝技术    
Abstract: The exploitation of low cost and high performance non-precious metal catalyst is of great significance to promote the development of fuel cells. In this work, Co(OH)2 nanosheets anchored on nanofiber were prepared by electrospinning technology and solvothermal reaction method, and the Co(OH)2 nanosheets as the hard template was converted to ZIF-67 nanosheets. Then, Co-N-C nanosheets (Co-NS) anchored on the nitrogen-doped carbon nanofibers (NCNF) were obtained by high temperature heat treatment method, which were non-precious metal catalysts for ORR. Based on the advantages of highly conductive NCNF, abundant Co-N-C active species and nanosheet array structure, NCNF/Co-NS has excellent ORR dynamics. Test results show that NCNF/Co-NS catalysts in 0.1 mol/L KOH solution, are comparable to Pt/C (0.92 V vs.RHE, 0.85 V vs.RHE) in terms of the initial potential, half-wave potential (0.9 V vs.RHE, 0.83 V vs.RHE). Moreover, the electrochemical stability and methanol resistance of NCNF/Co-NS are much higher than Pt/C. In summary, NCNF/Co-NS has a broad application prospect in the field of energy.
Key words:  non-precious metal catalysts    oxygen reduction reaction    nitrogen doped carbon nanofibers    cobalt-nitrogen-carbon    electrospinning
发布日期:  2025-05-29
ZTFLH:  TQ426  
基金资助: 国家留学基金委地方合作项目(202208410324);河南省高等学校重点研发项目(23A430008);河南省重点研发与推广专项(科技攻关)指导项目(222102230047);中国纺织工业联合会科技指导项目(2021047);2023年第一批教育部产学合作协同育人项目(230800383251919;230825135207276);中原工学院研究生教育改革与质量提升工程项目(2023059)
通讯作者:  *徐洋洋,中原工学院纺织服装产业研究院讲师、硕士研究生导师。围绕高性能双功能氧电催化剂的结构设计、可控合成以及电催化、锌空气电池应用方面开展研究工作。yyxu@zut.edu.cn   
作者简介:  董梦娇,现为中原工学院纺织服装产业研究院硕士研究生,在徐洋洋讲师的指导下进行研究。目前主要研究领域为柔性可穿戴电子器件。
引用本文:    
董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
DONG Mengjiao, XU Yangyang, LI Jingshan, YE Yipeng, LI Bingxin, CHEN Haotian. Co-N-C Nanosheet Anchored on N-doped Carbon Nanofiber for Oxygen Reduction Reaction. Materials Reports, 2025, 39(11): 24040222-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040222  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040222
1 Ma L, Chen S, Pei Z, et al. ACS Nano, 2018, 12, 1949.
2 Qin X, Wang Z, Han J, et al. Chemical Communications, 2018, 54, 7693.
3 Li Z, Ji S, Wang C, et al. Advanced Materials, 2023, 35, 2300905.
4 Zang Y, Zhang H, Zhang X, et al. Nano Research, 2016, 9, 2123.
5 Byeon A, Yun W C, Kim J M, et al. ChemElectroChem, 2023, 10, e202300234.
6 Cao T, Dai X, Fu Y, et al. Applied Surface Science, 2023, 607, 155055.
7 Jiang S, Tian K, Li X, et al. Journal of Colloid and Interface Science, 2022, 606, 635.
8 Xie X, Peng H, Ma G, et al. Materials Chemistry Frontiers, 2023, 7, 2595.
9 Zhao S, Ma Z, Wan Z, et al. Journal of Colloid and Interface Science, 2023, 642, 800.
10 Huang Y, Chen Y, Xu M, et al. Materials Today, 2023, 69, 66.
11 Peng R, Zhao Z, Sun H, et al. Chinese Journal of Chemistry, 2023, 41, 710.
12 Hao Y, Hu F, Chen Y, et al. Advanced Fiber Materials, 2022, 4, 185.
13 Wu M, Wang Y, Wei Z, et al. Journal of Materials Chemistry A, 2018, 6, 10918.
14 Hou C C, Zou L, Wang Y, et al. Angewandte Chemie International Edition, 2020, 59, 21360.
15 Wang Y, Li Z, Zhang P, et al. Nano Energy, 2021, 87, 106147.
16 Raju P, Ramalingam T, Nooruddin T, et al. Journal of Drug Delivery Science and Technology, 2020, 56, 101560.
17 Huang M, Liu W, Wang L, et al. Nano Research, 2020, 13, 810.
18 Sun X, Xu T, Sun W, et al. Journal of Alloys and Compounds, 2022, 898, 162778.
19 Li Y, Hu Z, Sheng M, et al. International Journal of Hydrogen Energy, 2023, 48, 36795.
20 Gu C, Li J, Liu J P, et al. Applied Catalysis B:Environmental, 2021, 286, 119888.
21 Li M, Yang Q, Fan L, et al. ACS Applied Materials & Interfaces, 2023, 15, 39448.
22 Pei W, Zhang J, Tong H, et al. Applied Catalysis B:Environmental, 2021, 282, 119575.
23 Shooshtari G H, Rezaei M. ACS Applied Materials & Interfaces, 2023, 15, 34682.
24 Wang L, Bai X, Wen B, et al. Composites Part B:Engineering, 2019, 166, 464.
25 Lei H, Cui M, Huang Y. ACS Applied Materials & Interfaces, 2022, 14, 34793.
26 Manimegalai M, Annaraj J. Materials Research Express, 2022, 9, 025002.
[1] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[2] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[3] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[4] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[5] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[6] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[7] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[8] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[9] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[10] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[11] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[12] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[13] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[14] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[15] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed