Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 23010013-5    https://doi.org/10.11896/cldb.23010013
  无机非金属及其复合材料 |
基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池
陈亚楠, 刘培涛*, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲*
宝鸡文理学院物理与光电技术学院,陕西 宝鸡 721016
S-Vacancy-Rich Co/Co9S8 Composites Based on N, P Co-doped Carbon Nanosheets as a Bifunctional Catalyst for Rechargeable Zn-Air Battery
CHEN Yanan, LIU Peitao*, ZU Yanqing, HAN Fengbo, LI Xiaodong, BI Pengfei, FENG Ailing*
Institute of Physics & Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, Shaanxi, China
下载:  全 文 ( PDF ) ( 9861KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锌-空气电池由于理论能量密度高、环境友好和安全性高等特性,受到了广泛关注。但锌-空气电池的性能受到阴极氧还原反应(ORR)/析氧反应(OER)缓慢动力学的限制,因此,开发高效双功能催化剂至关重要。采用简单的一步烧结法制备了基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物(Co/Co9S8@N,P-C)。利用X射线衍射仪和透射电子显微镜等分析其精细结构和形貌,结果表明,基于N,P共掺杂碳纳米片的Co/Co9S8复合物被成功合成。X射线光电子能谱和电子自旋共振等结果表明,富S空位的Co/Co9S8纳米复合物被成功合成。电化学测试结果表明,该纳米复合材料表现出优异的ORR和OER双功能催化活性(ΔE=0.73 V)。与基于Pt/C+Ir/C贵金属作为阴极催化剂的锌-空气电池相比,以富S空位的Co/Co9S8@N,P-C作为阴极催化剂的锌-空气电池具有1.48 V的开路电压(Pt/C+Ir/C:1.46 V)、80 mW·cm-2的功率密度(Pt/C+Ir/C:87.3 mW·cm-2)以及约170 h的循环稳定性(Pt/C+Ir/C:147 h)。本工作为合理设计用于锌-空气电池的非贵金属基双功能催化剂提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚楠
刘培涛
祖延清
韩逢博
李晓东
毕鹏飞
冯爱玲
关键词:  硫空位  析氧反应  氧还原反应  双功能催化剂  锌-空气电池    
Abstract: Rechargeable Zn-air battery has attracted widespread attention due to the high theoretical energy density, environmental friendliness and safety. However, the performance of Zn-air battery was limited by the slow kinetics of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) on the cathodic electrode. Therefore, it is important to develop efficient bifunctional catalysts. In this work, S-vacancy-rich Co/Co9S8 composites based on N, P co-doped carbon nanosheets (Co/Co9S8@N, P-C) was prepared by a simple one-step sintering method. X-ray diffractometer and transmission electron microscopy were used to analyze the crystalline structure and fine morphology. And the results show that Co/Co9S8 composites based on N, P co-doped carbon nanosheets were successfully prepared. The results of X-ray photoelectron spectroscopy and electron spin resonance showed that Co/Co9S8 nanocomposites with S-vacancy-rich were synthesized. The results of electrochemical testing indicate that the nanocomposites exhibit excellent ORR and OER bifunctional catalytic activity (ΔE=0.73 V). Compared with Zn-air battery prepared based on Pt/C+Ir/C catalyst as cathode, Zn-air battery prepared with S-vacancy-rich containing Co/Co9S8@N, P-C as cathode catalysts have 1.48 V open-circuit voltage (Pt/C+Ir/C:1.46 V), the power density of 80 mW·cm-2 (Pt/C+Ir/C:87.3 mW·cm-2) and 170 h cycle stability (Pt/C+Ir/C:146 h). This work provides a new idea for rational design of non-noble metal bifunctional catalysts for Zn-air battery.
Key words:  sulfur vacancy    oxygen evolution reaction    oxygen reduction reaction    bifunctional oxygen electrocatalyst    Zn-air battery
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  G31  
  TK02  
基金资助: 陕西省“三秦学者”创新团队支持计划(陕西东岭冶炼有限公司清洁能源材料与高性能器件创新团队);国家自然科学基金(51801001);陕西省重点研发计划(2019GY-197);陕西省自然科学基础研究计划(2015JM5215);中国博士后科学基金面上项目(2016M601878);宝鸡市科技计划项目(16RKX1-29);陕西省教育厅科研专项项目(21JK0478);宝鸡文理学院重点项目(209040127);陕西省千人计划青年项目;宝鸡市材料物理与功能器件重点实验室
通讯作者:  *冯爱玲,宝鸡文理学院教授、硕士研究生导师,宝鸡市材料物理与功能器件重点实验室主任。2002年长安大学应用化学系工业分析专业本科毕业,2005年第四军医大学药学系药物化学专业硕士毕业,2011年西安交通大学材料科学与工程专业博士毕业。2012年4月至2015年5月在西安交通大学从事博士后研究工作。2015年5月进入宝鸡文理学院物理与光电技术学院工作至今。目前主要从事清洁能源材料与高性能器件的研制、能源存储与转换器件开发和产业化等方面的研究工作。主要研究成果已在Scientific Reports、Composites Part B、Nanomaterials、Carbon及Journal of Alloys and Compounds等国内外知名期刊上发表学术论文60余篇。liupt@bjwlxy.edu.cn;ailingfeng@bjwlxy.edu.cn   
作者简介:  陈亚楠,2020年毕业于山西师范大学现代文理学院,获得理学学士学位。现为宝鸡文理学院硕士研究生,导师为冯爱玲教授。目前主要研究领域为锌-空气电池。
引用本文:    
陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
CHEN Yanan, LIU Peitao, ZU Yanqing, HAN Fengbo, LI Xiaodong, BI Pengfei, FENG Ailing. S-Vacancy-Rich Co/Co9S8 Composites Based on N, P Co-doped Carbon Nanosheets as a Bifunctional Catalyst for Rechargeable Zn-Air Battery. Materials Reports, 2024, 38(12): 23010013-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010013  或          http://www.mater-rep.com/CN/Y2024/V38/I12/23010013
1 Douziech M, Hellweg S, Verones F. Environmental Science & Technology, 2016, 50(14), 7870.
2 Zhou T P, Zhang N, Wu C Z, et al. Energy & Environmental Science, 2020, 13(4), 1132.
3 Li B Q, Zhang S Y, Wang B, et al. Energy & Environmental Science, 2018, 11(7), 1723.
4 Leong K W, Wang Y F, Ni M, et al. Renewable and Sustainable Energy Reviews, 2022, 154, 111771.
5 Lai C L, Gong M X, Zhou Y C, et al. Applied Catalysis B:Environmental, 2020, 274, 119086.
6 Wang M, Huang X X, Yu Z Q, et al. Nanomaterials, 2022, 12(22), 4069.
7 Han B, Feng S C, Xu J, et al. Materials Reports, 2021, 35(14), 14001 (in Chinese).
韩斌, 冯思琛, 徐俊, 等. 材料导报, 2021, 35(14), 14001.
8 Li H G, Wang J, Qi R J, et al. Applied Catalysis B:Environmental, 2021, 285, 119778.
9 Yao Z C, Tang T, Hu J S, et al. Energy & Fuels, 2021, 35(8), 6380.
10 Wei L C, Yang Y, Qin Y L, et al. Journal of Power Sources, 2020, 477, 228696.
11 Sun X L, Gong Q J, Liang Y X, et al. Materials Reports, 2021, 35(8), 8001 (in Chinese).
孙晓玲, 弓巧娟, 梁云霞, 等. 材料导报, 2021, 35(8), 8001.
12 Ou-Yang J, Gong J L, Li L Q, et al. Journal of Electroanalytical Chemistry, 2022, 920, 116628.
13 Yin J, Li Y X, Lv F, et al. ACS Nano, 2017, 11(2), 2275.
14 Xu F F, Zhao J H, Wang J L, et al. Journal of Colloid and Interface Science, 2022, 608, 2623.
15 Li H, Guo Z, Wang X W. Journal of Materials Chemistry A, 2017, 5(40), 21353.
16 Tang Z M, Nie Z X, Yuan M C, et al. ChemElectroChem, 2021, 8(17), 3311.
17 Zhang H M, Hu C Y, Ji M W, et al. Inorganic Chemistry Frontiers, 2021, 8(2), 368.
18 Liu S S, Wang M F, Sun X Y, et al. Advanced Materials, 2018, 30(4), 1704898.
19 Wang Y X, Wu M J, Li J, et al. Journal of Materials Chemistry A, 2020, 8(36), 19043.
20 Wang Q C, Lei Y P, Zhu Y G, et al. ACS Applied Materials & Interfaces, 2018, 10(35), 29448.
21 Ding J J, Wu D C, Huang S H, et al. Nanoscale, 2021, 13(31), 13249.
22 Tian Y H, Xu L, Li M, et al. Nano-Micro Letters, 2021, 13, 1.
23 Lu Q, Zou X H, Bu Y F, et al. Small, 2022, 18(4), 2105604.
24 Liu H M, Liu Q L, Wang Y R, et al. Chinese Chemical Letters, 2022, 33(2), 683.
25 Xu Y Z, Wang L L, Liu X, et al. Journal of Materials Chemistry A, 2016, 4(42), 16524.
26 Go Y H, Min K, An H, et al. Chemical Engineering Journal, 2022, 448, 137665.
27 Huang S S, Jin Z Q, Ning P, et al. Chemical Engineering Journal, 2021, 420, 127630.
28 Cui X Y, Liu Y Y, Han G S, et al. Small, 2021, 17(38), 2101607.
29 Wang Z D, Bai C K, Chen X Y, et al. Inorganic Chemistry Frontiers, 2019, 6(9), 2558.
30 Xu C, Zhan J, Wang Z, et al. Materials Today Energy, 2021, 19, 100594.
31 Xie J F, Qu H C, Xin J P, et al. Nano Research, 2017, 10(4), 1178.
32 Bian J J, Cheng X P, Meng X Y, et al. ACS Applied Energy Materials, 2019, 2(3), 2296.
33 Shao Q, Li Y, Cui X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6422.
[1] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[2] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[3] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[4] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[5] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[6] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[7] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[8] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[9] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[10] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[11] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[12] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[13] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[14] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[15] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed