Abstract: Rechargeable Zn-air battery has attracted widespread attention due to the high theoretical energy density, environmental friendliness and safety. However, the performance of Zn-air battery was limited by the slow kinetics of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) on the cathodic electrode. Therefore, it is important to develop efficient bifunctional catalysts. In this work, S-vacancy-rich Co/Co9S8 composites based on N, P co-doped carbon nanosheets (Co/Co9S8@N, P-C) was prepared by a simple one-step sintering method. X-ray diffractometer and transmission electron microscopy were used to analyze the crystalline structure and fine morphology. And the results show that Co/Co9S8 composites based on N, P co-doped carbon nanosheets were successfully prepared. The results of X-ray photoelectron spectroscopy and electron spin resonance showed that Co/Co9S8 nanocomposites with S-vacancy-rich were synthesized. The results of electrochemical testing indicate that the nanocomposites exhibit excellent ORR and OER bifunctional catalytic activity (ΔE=0.73 V). Compared with Zn-air battery prepared based on Pt/C+Ir/C catalyst as cathode, Zn-air battery prepared with S-vacancy-rich containing Co/Co9S8@N, P-C as cathode catalysts have 1.48 V open-circuit voltage (Pt/C+Ir/C:1.46 V), the power density of 80 mW·cm-2 (Pt/C+Ir/C:87.3 mW·cm-2) and 170 h cycle stability (Pt/C+Ir/C:146 h). This work provides a new idea for rational design of non-noble metal bifunctional catalysts for Zn-air battery.
通讯作者:
*冯爱玲,宝鸡文理学院教授、硕士研究生导师,宝鸡市材料物理与功能器件重点实验室主任。2002年长安大学应用化学系工业分析专业本科毕业,2005年第四军医大学药学系药物化学专业硕士毕业,2011年西安交通大学材料科学与工程专业博士毕业。2012年4月至2015年5月在西安交通大学从事博士后研究工作。2015年5月进入宝鸡文理学院物理与光电技术学院工作至今。目前主要从事清洁能源材料与高性能器件的研制、能源存储与转换器件开发和产业化等方面的研究工作。主要研究成果已在Scientific Reports、Composites Part B、Nanomaterials、Carbon及Journal of Alloys and Compounds等国内外知名期刊上发表学术论文60余篇。liupt@bjwlxy.edu.cn;ailingfeng@bjwlxy.edu.cn
陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
CHEN Yanan, LIU Peitao, ZU Yanqing, HAN Fengbo, LI Xiaodong, BI Pengfei, FENG Ailing. S-Vacancy-Rich Co/Co9S8 Composites Based on N, P Co-doped Carbon Nanosheets as a Bifunctional Catalyst for Rechargeable Zn-Air Battery. Materials Reports, 2024, 38(12): 23010013-5.
1 Douziech M, Hellweg S, Verones F. Environmental Science & Technology, 2016, 50(14), 7870. 2 Zhou T P, Zhang N, Wu C Z, et al. Energy & Environmental Science, 2020, 13(4), 1132. 3 Li B Q, Zhang S Y, Wang B, et al. Energy & Environmental Science, 2018, 11(7), 1723. 4 Leong K W, Wang Y F, Ni M, et al. Renewable and Sustainable Energy Reviews, 2022, 154, 111771. 5 Lai C L, Gong M X, Zhou Y C, et al. Applied Catalysis B:Environmental, 2020, 274, 119086. 6 Wang M, Huang X X, Yu Z Q, et al. Nanomaterials, 2022, 12(22), 4069. 7 Han B, Feng S C, Xu J, et al. Materials Reports, 2021, 35(14), 14001 (in Chinese). 韩斌, 冯思琛, 徐俊, 等. 材料导报, 2021, 35(14), 14001. 8 Li H G, Wang J, Qi R J, et al. Applied Catalysis B:Environmental, 2021, 285, 119778. 9 Yao Z C, Tang T, Hu J S, et al. Energy & Fuels, 2021, 35(8), 6380. 10 Wei L C, Yang Y, Qin Y L, et al. Journal of Power Sources, 2020, 477, 228696. 11 Sun X L, Gong Q J, Liang Y X, et al. Materials Reports, 2021, 35(8), 8001 (in Chinese). 孙晓玲, 弓巧娟, 梁云霞, 等. 材料导报, 2021, 35(8), 8001. 12 Ou-Yang J, Gong J L, Li L Q, et al. Journal of Electroanalytical Chemistry, 2022, 920, 116628. 13 Yin J, Li Y X, Lv F, et al. ACS Nano, 2017, 11(2), 2275. 14 Xu F F, Zhao J H, Wang J L, et al. Journal of Colloid and Interface Science, 2022, 608, 2623. 15 Li H, Guo Z, Wang X W. Journal of Materials Chemistry A, 2017, 5(40), 21353. 16 Tang Z M, Nie Z X, Yuan M C, et al. ChemElectroChem, 2021, 8(17), 3311. 17 Zhang H M, Hu C Y, Ji M W, et al. Inorganic Chemistry Frontiers, 2021, 8(2), 368. 18 Liu S S, Wang M F, Sun X Y, et al. Advanced Materials, 2018, 30(4), 1704898. 19 Wang Y X, Wu M J, Li J, et al. Journal of Materials Chemistry A, 2020, 8(36), 19043. 20 Wang Q C, Lei Y P, Zhu Y G, et al. ACS Applied Materials & Interfaces, 2018, 10(35), 29448. 21 Ding J J, Wu D C, Huang S H, et al. Nanoscale, 2021, 13(31), 13249. 22 Tian Y H, Xu L, Li M, et al. Nano-Micro Letters, 2021, 13, 1. 23 Lu Q, Zou X H, Bu Y F, et al. Small, 2022, 18(4), 2105604. 24 Liu H M, Liu Q L, Wang Y R, et al. Chinese Chemical Letters, 2022, 33(2), 683. 25 Xu Y Z, Wang L L, Liu X, et al. Journal of Materials Chemistry A, 2016, 4(42), 16524. 26 Go Y H, Min K, An H, et al. Chemical Engineering Journal, 2022, 448, 137665. 27 Huang S S, Jin Z Q, Ning P, et al. Chemical Engineering Journal, 2021, 420, 127630. 28 Cui X Y, Liu Y Y, Han G S, et al. Small, 2021, 17(38), 2101607. 29 Wang Z D, Bai C K, Chen X Y, et al. Inorganic Chemistry Frontiers, 2019, 6(9), 2558. 30 Xu C, Zhan J, Wang Z, et al. Materials Today Energy, 2021, 19, 100594. 31 Xie J F, Qu H C, Xin J P, et al. Nano Research, 2017, 10(4), 1178. 32 Bian J J, Cheng X P, Meng X Y, et al. ACS Applied Energy Materials, 2019, 2(3), 2296. 33 Shao Q, Li Y, Cui X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6422.