Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22120216-8    https://doi.org/10.11896/cldb.22120216
  金属与金属基复合材料 |
超临界二氧化碳输送管道内腐蚀研究进展
高怡萱1,2,3, 潘杰1,3,*, 李焰2,*, 张建1,3, 李阳3
1 中石化石油工程设计有限公司,山东 东营 257000
2 中国石油大学(华东)材料科学与工程学院,山东 青岛 266580
3 中国石化碳捕集、利用与封存(CCUS)重点实验室,山东 东营 257000
Research Progress on the Corrosion of the Inner Surface of Pipeline Used for Transporting Supercritical Carbon Dioxide
GAO Yixuan1,2,3, PAN Jie1,3,*, LI Yan2,*, ZHANG Jian1,3, LI Yang3
1 SINOPEC Petroleum Engineering Corporation, Dongying 257000, Shandong, China
2 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
3 SINOPEC Key Lab of Carbon Capture, Utilization and Storage (CCUS), Dongying 257000, Shandong, China
下载:  全 文 ( PDF ) ( 3156KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳捕集、利用与封存技术(CCUS)是目前实现化石能源低碳化利用和碳中和的关键途径。随着CCUS技术的不断发展,超临界二氧化碳(CO2)输送管道的内腐蚀问题势必成为影响输碳管道工程安全运维的痛点之一。管线钢在超临界CO2环境中的腐蚀行为和机理与传统油气田CO2腐蚀有着较大不同,是一种在全新环境体系下的腐蚀问题。本文以水相介质导致超临界CO2管道内腐蚀这一主要诱因为线索,综述了杂质、温度、压力以及流速等因素对典型管线钢在超临界工况下的CO2内腐蚀行为的影响,尤其针对含水量这一关键因素进行了详述和对比,分析了当前超临界CO2管输过程中仍然存在的腐蚀与防护问题以及挑战,最后对超临界CO2腐蚀问题未来的重点关注方向进行了展望,结论有助于优化未来输碳管道工程设计与制定对应的腐蚀控制方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高怡萱
潘杰
李焰
张建
李阳
关键词:  超临界二氧化碳  管线钢  腐蚀    
Abstract: Carbon capture, utilization and storage (CCUS) is a key method to achieve low carbon utilization and carbon neutrality of fossil energy. With the continuous development of CCUS technology, the internal corrosion problem of supercritical carbon dioxide (CO2) transportation pipeline has gradually become one of the key pain points affecting the safe operation of CO2 transportation pipeline. The corrosion behavior and mechanism of pipeline steel in supercritical CO2 medium are quite different from that of traditional CO2 corrosion happened in oil & gas environment, which is a bran-new corrosion problem research system. This paper reviews the influence of impurities, temperature, pressure and flow rate on the CO2 internal corrosion behavior of typical pipeline steels under supercritical conditions and the main incentive of supercritical CO2 pipeline corrosion caused by aqueous medium is taken as a clue. The water content is detailly discussed and compared especially. Generally, the future focus on the supercritical CO2 corrosion issues is prospected. The challenges that still exist in the current supercritical CO2 pipeline transportation process are analyzed as well. The conclusions are helpful to guide the design optimization of future carbon pipeline engineering and develop corresponding corrosion control methods.
Key words:  supercritical CO2    pipeline steel    internal corrosion
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TG178  
基金资助: 中国工程院战略研究与咨询项目
通讯作者:  *潘杰,中石化石油工程设计有限公司博士后。2021年中国石油大学(华东)材料科学与工程学院材料科学与工程专业博士研究生毕业,2021—2022年到法国索邦大学交流学习,2022年5月至今在中石化石油工程设计有限公司博士后工作站工作。目前主要从事油气管道内腐蚀、金属材料表面处理等方面的研究工作。发表Corrosion Science等国内外高水平论文10余篇,授权发明专利1项。 panjie1061512@sina.com
李焰,中国石油大学(华东)材料科学与工程学院教授、博士研究生导师。主要从事腐蚀与防护方面的研究,主持各类科研项目30余项,获得4项人才基金项目资助,荣获中国石油和化工自动化行业科学技术奖一等奖、山东省科学技术进步一等奖、中国科学院卢嘉锡青年人才奖、青岛市青年科技奖等诸多奖项,发表论文(著)100余篇(部),其中SCI、EI核心期刊60余篇,被SCI他人引用2 000余次、授权发明专利20余项。yanlee@upc.edu.cn   
作者简介:  高怡萱,2021年6月毕业于青岛农业大学获得工学学士学位。现为中国石油大学(华东)材料科学与工程学院硕士研究生,在李焰教授的指导下进行研究。目前主要研究领域为装备材料工程。
引用本文:    
高怡萱, 潘杰, 李焰, 张建, 李阳. 超临界二氧化碳输送管道内腐蚀研究进展[J]. 材料导报, 2024, 38(12): 22120216-8.
GAO Yixuan, PAN Jie, LI Yan, ZHANG Jian, LI Yang. Research Progress on the Corrosion of the Inner Surface of Pipeline Used for Transporting Supercritical Carbon Dioxide. Materials Reports, 2024, 38(12): 22120216-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120216  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22120216
1 Li Y. Progress in carbon neutralization and carbon capture, utilization and storage technology, China Petrochemical Press, China, 2021, pp. 128 (in Chinese).
李阳. 碳中和与碳捕集利用封存技术进展, 中国石化出版社, 2021, pp. 128.
2 Hu Q H, Li Y X, Zhang J, et al. Oil & Gas Storage and Transportation, 2022, 41(4), 361 (in Chinese).
胡其会, 李玉星, 张建, 等. 油气储运, 2022, 41(4), 361.
3 Zhang X, Li Y, Ma Q, et al. Strategic Study of Chinese Academy of Engineering, 2021, 23(6), 70 (in Chinese).
张贤, 李阳, 马乔, 等. 中国工程科学, 2021, 23(6), 70.
4 Lin H Z, Pei A G, Fang M X. Chemical Industry and Engineering Progress, 2018, 37(12), 4874 (in Chinese).
林海周, 裴爱国, 方梦祥. 化工进展, 2018, 37(12), 4874.
5 Sun C, Wang Y, Sun J B, et al. The Journal of Supercritical Fluids, 2016, 116, 70.
6 Brown J, Graver B, Gulbrandsen E, et al. Energy Procedia, 2014, 63, 2432.
7 Barker R, Burkle D, Charpentier T, et al. Corrosion Science, 2018, 142, 312.
8 Cui G, Yang Z Q, Liu J G, et al. International Journal of Greenhouse Gas Control, 2019, 90, 102814.
9 Cao R, Ding Y, Zhao X K, et al. Corrosion Science and Protection Technology, 2017, 29(6), 657 (in Chinese).
曹睿, 丁云, 赵小康, 等. 腐蚀科学与防护技术, 2017, 29(6), 657.
10 Choi Y S, Nesic S, Young D. Environmental Science & Technology, 2010, 44(23), 9233.
11 Wei L, Pang X L, Gao K W. Corrosion Science, 2018, 136, 339.
12 Zhang G A, Liu D, Li Y Z, et al. Corrosion Science, 2017, 120, 107.
13 Hatami S, Ghaderi A A, Niknejad K M, et al. The Journal of Supercritical Fluids, 2016, 117, 108.
14 Jiang X, Qu D R, Song X L, et al. International Journal of Greenhouse Gas Control, 2019, 85, 11.
15 Liu A Q, Bian C, Wang Z M, et al. Corrosion Science, 2018, 134, 149.
16 Hua Y, Barker R, Neville A. International Journal of Greenhouse Gas Control, 2015, 37, 412.
17 Li K Y, Zeng Y M, Luo J L. Corrosion Science, 2021, 184, 109350.
18 Ayello F, Evans K, Sridhar N, et al. In:Proceedings of the 8th International Pipeline Conference. Calgary, 2010, pp. 111.
19 Dugstad A, Morland B, Clausen S. Energy Procedia, 2011, 4, 3063.
20 Mcgrail B P, Schaef H T, Gleakou V A, et al. Energy Procedia, 2009, 1, 3415.
21 Xiang Y, Wang Z, Xu C, et al. The Journal of Supercritical Fluids, 2011, 58, 286.
22 Hua Y, Braker R, Neville A. The Journal of Supercritical Fluids, 2015, 97, 224.
23 Li C, Xiang Y, Song C C, et al. The Journal of Supercritical Fluids, 2019, 146, 107.
24 Guo S Q, Xu L N, Zhang L, et al. Corrosion Science, 2012, 63, 246.
25 Wei L, Gao K W, Li Q. Applied Surface Science, 2018, 440, 524.
26 Wei L, Pang X L, Gao K W. Corrosion Science, 2016, 103, 132.
27 Li Y Y, Jiang Z N, Zhang Q H, et al. Corrosion Science, 2022, 205, 110436.
28 Sun C, Sun J B, Wang Y, et al. Corrosion Science, 2016, 107, 193.
29 Hua Y, Barker R, Neville A. Applied Surface Science, 2015, 356, 499.
30 Zhang Y C, Ju X H, Pang X L, et al. Journal of Chinese Society for Corrosion and Protection, 2015, 35(3), 220 (in Chinese).
张玉成, 鞠新华, 庞晓露, 等. 中国腐蚀与防护学报, 2015, 35(3), 220.
31 Wang W H, Shen K L, Tang S, et al. Process Safety and Environmental Protection, 2019, 130, 57.
32 Tang Y, Guo X P, Zhang G A. Corrosion Science, 2017, 118, 118.
33 Hua Y, Jonnalagadda R, Zhang L, et al. International Journal of Greenhouse Gas Control, 2017, 64, 126.
34 Teeter L, Repukaiti R, Huerta N, et al. The Journal of Supercritical Fluids, 2019, 152, 104520.
35 Zeng Y M, Li K Y. Corrosion Science, 2020, 165, 108404.
36 Li K Y, Zeng Y M, Luo J L. Corrosion Science, 2021, 190, 109639.
37 Xu D, Liu J G, Wang L M, et al. International Petroleum Economics, 2021, 29(6), 8 (in Chinese).
徐冬, 刘建国, 王立敏, 等. 国际石油经济, 2021, 29(6), 8.
38 Jia S Y. Cleaning World, 2012, 28(12), 30 (in Chinese).
贾思洋. 清洗世界, 2012, 28(12), 30.
39 Dugstad A, Halseid M, Morland B. Energy Procedia, 2013, 37, 2877.
40 Hua Y, Barker R, Neville A. International Journal of Greenhouse Gas Control, 2014, 31, 48.
41 Farelas F, Choi Y S, Nesic S. Corrosion, 2013, 69, 243.
42 Zhang Y C, Pang X L, Qu S P, et al. Corrosion Science, 2012, 59, 186.
43 Wei L, Pang X L, Liu C, et al. Corrosion Science, 2015, 100, 404.
44 Xu M H, Li W H, Zhou Y, et al. International Journal of Greenhouse Gas Control, 2016, 51, 357.
45 Li Y Y, Liu D, Zhu G Y, et al. Surface Technology, 2020, 49(3), 35 (in Chinese).
李岩岩, 刘丹, 朱光宇, 等. 表面技术, 2020, 49(3), 35.
46 Wang Y, Wang B, Xi X X, et al. Corrosion Science, 2022, 200, 110235.
47 Wei L, Gao K W. Journal of Alloys and Compounds, 2019, 792, 328.
48 Xiang Y, Xu M H, Choi Y S. Corrosion Engineering, Science and Technology, 2017, 52, 485.
49 Liu J W, Chen L, Yu J L, et al. Specifications for engineering of carbon dioxide pipeline transportation:SH/T 3202-2018, China Petrochemical Press, China, 2018, pp. 590 (in Chinese).
刘建武, 陈霖, 俞健良, 等. 二氧化碳输送管道工程设计标准:SH/T 3202-2018, 中国石化出版社, 2018, pp. 590.
50 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图(2019版). 科学出版社, 2019.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[3] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[4] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[5] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[6] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[7] 高冲, 董丽虹, 王海斗, 李斌, 吕晓仁, 聂佳鹏. 航天铝合金变极性等离子弧焊焊接接头的腐蚀与疲劳交替研究[J]. 材料导报, 2024, 38(12): 22100234-7.
[8] 郭贺, 焦进超, 张津, 王旭东, 连勇, 冯波, 冯晓伟, 郑开宏, 丁啸云, 韩东. 不同铝合金对Al/Mg/Al层状复合材料腐蚀行为的影响[J]. 材料导报, 2024, 38(12): 22090163-8.
[9] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[10] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[11] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[12] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[13] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[14] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[15] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed