Research Progress on the Corrosion of the Inner Surface of Pipeline Used for Transporting Supercritical Carbon Dioxide
GAO Yixuan1,2,3, PAN Jie1,3,*, LI Yan2,*, ZHANG Jian1,3, LI Yang3
1 SINOPEC Petroleum Engineering Corporation, Dongying 257000, Shandong, China 2 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China 3 SINOPEC Key Lab of Carbon Capture, Utilization and Storage (CCUS), Dongying 257000, Shandong, China
Abstract: Carbon capture, utilization and storage (CCUS) is a key method to achieve low carbon utilization and carbon neutrality of fossil energy. With the continuous development of CCUS technology, the internal corrosion problem of supercritical carbon dioxide (CO2) transportation pipeline has gradually become one of the key pain points affecting the safe operation of CO2 transportation pipeline. The corrosion behavior and mechanism of pipeline steel in supercritical CO2 medium are quite different from that of traditional CO2 corrosion happened in oil & gas environment, which is a bran-new corrosion problem research system. This paper reviews the influence of impurities, temperature, pressure and flow rate on the CO2 internal corrosion behavior of typical pipeline steels under supercritical conditions and the main incentive of supercritical CO2 pipeline corrosion caused by aqueous medium is taken as a clue. The water content is detailly discussed and compared especially. Generally, the future focus on the supercritical CO2 corrosion issues is prospected. The challenges that still exist in the current supercritical CO2 pipeline transportation process are analyzed as well. The conclusions are helpful to guide the design optimization of future carbon pipeline engineering and develop corresponding corrosion control methods.
高怡萱, 潘杰, 李焰, 张建, 李阳. 超临界二氧化碳输送管道内腐蚀研究进展[J]. 材料导报, 2024, 38(12): 22120216-8.
GAO Yixuan, PAN Jie, LI Yan, ZHANG Jian, LI Yang. Research Progress on the Corrosion of the Inner Surface of Pipeline Used for Transporting Supercritical Carbon Dioxide. Materials Reports, 2024, 38(12): 22120216-8.
1 Li Y. Progress in carbon neutralization and carbon capture, utilization and storage technology, China Petrochemical Press, China, 2021, pp. 128 (in Chinese). 李阳. 碳中和与碳捕集利用封存技术进展, 中国石化出版社, 2021, pp. 128. 2 Hu Q H, Li Y X, Zhang J, et al. Oil & Gas Storage and Transportation, 2022, 41(4), 361 (in Chinese). 胡其会, 李玉星, 张建, 等. 油气储运, 2022, 41(4), 361. 3 Zhang X, Li Y, Ma Q, et al. Strategic Study of Chinese Academy of Engineering, 2021, 23(6), 70 (in Chinese). 张贤, 李阳, 马乔, 等. 中国工程科学, 2021, 23(6), 70. 4 Lin H Z, Pei A G, Fang M X. Chemical Industry and Engineering Progress, 2018, 37(12), 4874 (in Chinese). 林海周, 裴爱国, 方梦祥. 化工进展, 2018, 37(12), 4874. 5 Sun C, Wang Y, Sun J B, et al. The Journal of Supercritical Fluids, 2016, 116, 70. 6 Brown J, Graver B, Gulbrandsen E, et al. Energy Procedia, 2014, 63, 2432. 7 Barker R, Burkle D, Charpentier T, et al. Corrosion Science, 2018, 142, 312. 8 Cui G, Yang Z Q, Liu J G, et al. International Journal of Greenhouse Gas Control, 2019, 90, 102814. 9 Cao R, Ding Y, Zhao X K, et al. Corrosion Science and Protection Technology, 2017, 29(6), 657 (in Chinese). 曹睿, 丁云, 赵小康, 等. 腐蚀科学与防护技术, 2017, 29(6), 657. 10 Choi Y S, Nesic S, Young D. Environmental Science & Technology, 2010, 44(23), 9233. 11 Wei L, Pang X L, Gao K W. Corrosion Science, 2018, 136, 339. 12 Zhang G A, Liu D, Li Y Z, et al. Corrosion Science, 2017, 120, 107. 13 Hatami S, Ghaderi A A, Niknejad K M, et al. The Journal of Supercritical Fluids, 2016, 117, 108. 14 Jiang X, Qu D R, Song X L, et al. International Journal of Greenhouse Gas Control, 2019, 85, 11. 15 Liu A Q, Bian C, Wang Z M, et al. Corrosion Science, 2018, 134, 149. 16 Hua Y, Barker R, Neville A. International Journal of Greenhouse Gas Control, 2015, 37, 412. 17 Li K Y, Zeng Y M, Luo J L. Corrosion Science, 2021, 184, 109350. 18 Ayello F, Evans K, Sridhar N, et al. In:Proceedings of the 8th International Pipeline Conference. Calgary, 2010, pp. 111. 19 Dugstad A, Morland B, Clausen S. Energy Procedia, 2011, 4, 3063. 20 Mcgrail B P, Schaef H T, Gleakou V A, et al. Energy Procedia, 2009, 1, 3415. 21 Xiang Y, Wang Z, Xu C, et al. The Journal of Supercritical Fluids, 2011, 58, 286. 22 Hua Y, Braker R, Neville A. The Journal of Supercritical Fluids, 2015, 97, 224. 23 Li C, Xiang Y, Song C C, et al. The Journal of Supercritical Fluids, 2019, 146, 107. 24 Guo S Q, Xu L N, Zhang L, et al. Corrosion Science, 2012, 63, 246. 25 Wei L, Gao K W, Li Q. Applied Surface Science, 2018, 440, 524. 26 Wei L, Pang X L, Gao K W. Corrosion Science, 2016, 103, 132. 27 Li Y Y, Jiang Z N, Zhang Q H, et al. Corrosion Science, 2022, 205, 110436. 28 Sun C, Sun J B, Wang Y, et al. Corrosion Science, 2016, 107, 193. 29 Hua Y, Barker R, Neville A. Applied Surface Science, 2015, 356, 499. 30 Zhang Y C, Ju X H, Pang X L, et al. Journal of Chinese Society for Corrosion and Protection, 2015, 35(3), 220 (in Chinese). 张玉成, 鞠新华, 庞晓露, 等. 中国腐蚀与防护学报, 2015, 35(3), 220. 31 Wang W H, Shen K L, Tang S, et al. Process Safety and Environmental Protection, 2019, 130, 57. 32 Tang Y, Guo X P, Zhang G A. Corrosion Science, 2017, 118, 118. 33 Hua Y, Jonnalagadda R, Zhang L, et al. International Journal of Greenhouse Gas Control, 2017, 64, 126. 34 Teeter L, Repukaiti R, Huerta N, et al. The Journal of Supercritical Fluids, 2019, 152, 104520. 35 Zeng Y M, Li K Y. Corrosion Science, 2020, 165, 108404. 36 Li K Y, Zeng Y M, Luo J L. Corrosion Science, 2021, 190, 109639. 37 Xu D, Liu J G, Wang L M, et al. International Petroleum Economics, 2021, 29(6), 8 (in Chinese). 徐冬, 刘建国, 王立敏, 等. 国际石油经济, 2021, 29(6), 8. 38 Jia S Y. Cleaning World, 2012, 28(12), 30 (in Chinese). 贾思洋. 清洗世界, 2012, 28(12), 30. 39 Dugstad A, Halseid M, Morland B. Energy Procedia, 2013, 37, 2877. 40 Hua Y, Barker R, Neville A. International Journal of Greenhouse Gas Control, 2014, 31, 48. 41 Farelas F, Choi Y S, Nesic S. Corrosion, 2013, 69, 243. 42 Zhang Y C, Pang X L, Qu S P, et al. Corrosion Science, 2012, 59, 186. 43 Wei L, Pang X L, Liu C, et al. Corrosion Science, 2015, 100, 404. 44 Xu M H, Li W H, Zhou Y, et al. International Journal of Greenhouse Gas Control, 2016, 51, 357. 45 Li Y Y, Liu D, Zhu G Y, et al. Surface Technology, 2020, 49(3), 35 (in Chinese). 李岩岩, 刘丹, 朱光宇, 等. 表面技术, 2020, 49(3), 35. 46 Wang Y, Wang B, Xi X X, et al. Corrosion Science, 2022, 200, 110235. 47 Wei L, Gao K W. Journal of Alloys and Compounds, 2019, 792, 328. 48 Xiang Y, Xu M H, Choi Y S. Corrosion Engineering, Science and Technology, 2017, 52, 485. 49 Liu J W, Chen L, Yu J L, et al. Specifications for engineering of carbon dioxide pipeline transportation:SH/T 3202-2018, China Petrochemical Press, China, 2018, pp. 590 (in Chinese). 刘建武, 陈霖, 俞健良, 等. 二氧化碳输送管道工程设计标准:SH/T 3202-2018, 中国石化出版社, 2018, pp. 590. 50 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图(2019版). 科学出版社, 2019.