Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22120169-13    https://doi.org/10.11896/cldb.22120169
  无机非金属及其复合材料 |
二维材料用于电化学法制备过氧化氢的研究进展
盛雄1,2, 李邦兴1,*, 陆顺2, 陆文强2, 李晓锋3, 康帅2,*
1 重庆理工大学理学院,重庆 400054
2 中国科学院重庆绿色智能技术研究院,重庆 400714
3 重庆市计量质量检测研究院,重庆 401123
Research Progress on Electrochemically Producing Hydrogen Peroxide Using Two-dimensional Materials as Catalysts
SHENG Xiong1,2, LI Bangxing1,*, LU Shun2, LU Wenqiang2, LI Xiaofeng3, KANG Shuai2,*
1 Faculty of Science, Chongqing University of Technology, Chongqing 400054, China
2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
3 Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
下载:  全 文 ( PDF ) ( 65662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 用电化学的方法通过氧还原反应生产过氧化氢更为环保和有效,而实现这一途径的关键在于制备高活性、高选择性和高稳定性的电催化剂。贵金属催化剂是首选,其催化活性好且稳定性高。但是,贵金属成本高,不利于过氧化氢的规模化制备。因此,减少贵金属用量或者寻找低成本的可替代品一直是近年来的研究热点。很多非贵金属材料已被用作氧还原反应的电催化剂,其中部分材料和贵金属的催化性能相当,甚至更加优异。二维材料相比于本体材料更利于电子传递且更加容易进行化学修饰,二维材料的原子利用率高,可以给电化学反应提供较大的反应场所和更多的裸露活性位点。本文根据已报道的大量实验和理论计算研究,讨论了用二电子氧还原反应法制备过氧化氢的反应机理,然后列举了近年来石墨烯类催化材料、二维过渡金属硫族化合物、二维共价有机骨架和二维金属有机骨架、石墨相氮化碳、二维过渡金属碳/氮化物在电催化氧还原反应中的研究进展,重点分析了其电化学反应机理。最后,指出了二维材料在二电子氧还原反应中的研究挑战和趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盛雄
李邦兴
陆顺
陆文强
李晓锋
康帅
关键词:  电催化  氧还原反应  过氧化氢  二维材料    
Abstract: The electrochemical production of hydrogen peroxide via the two-electron oxygen reduction reaction (ORR) is a green, mild, and on-demand strategy. The key to this process is highly active, selective, and stable electrocatalysts. Noble metal catalysts are the most effective catalysts for the electrochemical production of hydrogen peroxide due to their unique physical and chemical properties. However, low-cost catalysts are essential for achieving the large-scale production of hydrogen peroxide. Therefore, reducing the dosage of precious metals or finding affor-dable and readily available alternatives has been a topic of considerable research interest in recent years. Numerous non-precious metals or non-metallic materials have been used in oxygen reduction electrocatalysts, some of which have comparable or even superior electrochemical perfor-mances compared to noble metal catalysts. Furthermore, the band structures and surface structures of two-dimensional materials are easier to adjust than those of bulk materials. Two-dimensional materials exhibit faster electron transportation, achieve higher atomic utilization, and possess more exposed active sites. This review discusses the reaction mechanisms of the two-electron ORR for hydrogen peroxide production based on reported experimental results and theoretical calculations, and collates recent reports on the use of graphene, two-dimensional transition metal chalcogenide compounds, two-dimensional MOFs/COFs, g-C3N4, and MXenes as electrocatalysts for the ORR. Finally, the remaining challenges of the application of two-dimensional materials as oxygen reduction electrocatalysts are briefly summarized.
Key words:  electrocatalysis    two-electron oxygen reduction    hydrogen peroxide    two-dimensional materials
出版日期:  2024-06-25      发布日期:  2024-06-25
ZTFLH:  O64  
基金资助: 中国科学院青年创新促进会(2019374);重庆自然科学基金项目(cstc2021jcyj-msxmX0923)
通讯作者:  *李邦兴,重庆理工大学理学院副教授、硕士研究生导师。2013年四川大学电子信息学院光学工程专业博士毕业后到重庆理工大学工作至今,2015年到2016年期间在中国香港教育大学资源与环境学院做高级研究助理,2018年到2020年在美国威斯康辛大学密尔沃基分校做访问学者。目前主要从事新能源材料与器件等方面的研究。发表论文20余篇,包括Optics Materials、Physic B等。libx@cqut.edu.cn;
康帅,中国科学院重庆绿色智能技术研究院副研究员、硕士研究生导师。2015年中山大学物理科学与工程技术学院凝聚态物理专业博士毕业,2015年到2017年在美国威斯康辛大学密尔沃基分校做博士后、研究助理,随后到中国科学院重庆绿色智能技术研究院工作至今。目前主要从事电催化剂、电化学电池等方面的研究工作。发表论文30余篇,包括Nano Letters、Journal of Power Sources、Electrochimica Acta、Chemical Communications等。kangshuai@cigit.ac.cn   
作者简介:  盛雄,2021年6月于重庆理工大学获得工学学士学位。现为重庆理工大学理学院和中国科学院重庆绿色智能技术研究院联合培养的硕士研究生,在李邦兴副教授和康帅副研究员的指导下进行研究。目前主要研究领域为电催化制备过氧化氢。
引用本文:    
盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
SHENG Xiong, LI Bangxing, LU Shun, LU Wenqiang, LI Xiaofeng, KANG Shuai. Research Progress on Electrochemically Producing Hydrogen Peroxide Using Two-dimensional Materials as Catalysts. Materials Reports, 2024, 38(11): 22120169-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120169  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22120169
1 Ma X, Cheng H. Chemical Engineering Journal, 2022, 429, 132373.
2 Zhang K, Zhou M, Yang K, et al. Journal of Hazardous Materials, 2022, 423, 127172.
3 Hage R and Lienke A. Angewandte Chemie International Edition, 2005, 45, 2.
4 Chen Z, Chen S, Siahrostami S, et al. Reaction Chemistry & Enginee-ring, 2017, 2, 239.
5 Wang W, Zhang H, Jiang J, et al. New Journal of Chemistry, 2022, 46, 2.
6 Fukuzumi S, Yamada Y, Karlin K D. Electrochimica Acta, 2012, 82, 493.
7 Campos-Martin J M, Blanco-Brieva G, Fierro J L. Angewandte Chemie International Edition, 2006, 45, 42.
8 Garcia T, Murillo R, Agouram S, et al. Chemical Communications, 2012, 48, 43.
9 Lei J, Chen Z Q, Li Y Z, et al. Materials Reports, 2021, 35(9), 9140 (in Chinese).
雷静, 陈子栖, 李怡招, 等. 材料导报, 2021, 35(9), 9140.
10 Xia C, Back S, Ringe S, et al. Nature Catalysis, 2020, 3, 2.
11 Jiang Y, Ni P, Chen C, et al. Advanced Energy Materials, 2018, 8, 31.
12 Watanabe E, Ushiyama H, Yamashita K. Catalysis Science & Technology, 2015, 5, 2769.
13 Gao J, Liu B. ACS Materials Letters, 2020, 2, 8, 1008.
14 Wang K, Huang J, Chen H, et al. Chemical Communications, 2020, 56, 81.
15 Yasin G, Ibrahim S, Ajmal S, et al. Coordination Chemistry Reviews, 2022, 469, 214669.
16 Kumar A, Vashistha V K, Das D K, et al. Fuel, 2021, 304, 121420.
17 Kumar A, Ibraheem S, Anh Nguyen T, et al. Coordination Chemistry Reviews, 2021, 446, 214122.
18 Zhang Y, Lin Y, Duan T, et al. Materials Today, 2021, 48, 115.
19 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 5696.
20 Kim H W, Park H, Roh J S, et al. Chemistry of Materials, 2019, 31, 3967.
21 Rêgo C R, Oliveira L N, Tereshchuk P, et al. Journal of Physics:Condensed Matter, 2015, 27, 41.
22 Pizzutilo E, Kasian O, Choi C H, et al. Chemical Physics Letters, 2017, 683, 436.
23 Terrones H, Lv R, Terrones M, et al. Reports on Progress in Physics, 2012, 75, 6.
24 Kim H W, Ross M B, Kornienko N, et al. Nature Catalysis, 2018, 1, 282.
25 Zhang L, Xia Z. The Journal of Physical Chemistry C, 2011, 115, 11170.
26 Zhang B, Xu W, Lu Z, et al. Transactions of Tianjin University, 2020, 26, 188.
27 Su P, Zhou M, Song G, et al. Journal of Hazardous Materials, 2020, 397, 122781.
28 Sun Y, Li S, Jovanov Z P, et al. ChemSusChem, 2018, 11, 19.
29 Perazzolo V, Durante C, Pilot R, et al. Carbon, 2015, 95, 949.
30 Wan K, Yu Z P, Li X H, et al. ACS Catalysis, 2015, 5, 7.
31 Liu Y, Liu H, Wang C, et al. Environmental Science & Technology, 2013, 47, 23.
32 Guo D, Shibuya R, Akiba C, et al. Science, 2016, 351, 6271.
33 Su P, Zhou M, Lu X, et al. Applied Catalysis B:Environmental, 2019, 245, 583.
34 Fernandez-Escamilla H N, Guerrero-Sanchez J, Contreras E, et al. Advanced Energy Materials, 2020, 11, 2002459.
35 Mavrikis S, Göltz M, Rosiwal S, et al. ACS Applied Energy Materials, 2020, 3, 3169.
36 Mavrikis S, Göltz M, Perry S C, et al. ACS Energy Letters, 2021, 6, 2369.
37 Espinoza-Montero P J, Alulema-Pullupaxi P, Frontana-Uribe B A, et al. Current Opinion in Solid State and Materials Science, 2022, 26, 100988.
38 Xia Y, Zhao X, Xia C, et al. Nature Communications, 2021, 12, 1.
39 Chen S, Chen Z, Siahrostami S, et al. Journal of American Chemistry Society, 2018, 140, 25.
40 Li X, Wang X, Xiao G, et al. Journal of Colloid and Interface Science, 2021, 602, 799.
41 Aveiro L R, da Silva A G M, Antonin V S, et al. Electrochimica Acta, 2018, 268, 101.
42 Wu K H, Wang D, Lu X, et al. Chem, 2020, 6, 1443.
43 Lu Z, Chen G, Siahrostami S, et al. Nature Catalysis, 2018, 1, 156.
44 Sa Y J, Kim J H, Joo S H. Angewandte Chemie International Edition, 2019, 58, 4.
45 Nesselberger M, Roefzaad M, Hamou R F, et al. Nature Materials, 2013, 12, 10.
46 Mittermeier T, Weiß A, Gasteiger H A, et al. Journal of the Electroche-mical Society, 2017, 164, F1081.
47 Fortunato G V, Pizzutilo E, Mingers A M, et al. The Journal of Physical Chemistry C, 2018, 122, 15878.
48 Wang Y L, Gurses S, Felvey N, et al. ACS Catalysis, 2019, 9, 8453.
49 Song X, Li N, Zhang H, et al. Journal of Power Sources, 2019, 435, 226771.
50 Song X, Li N, Zhang H, et al. ACS Applied Materials & Interfaces, 2020, 12, 15.
51 Zhang Q, Tan X, Bedford N M, et al. Nature Communications, 2020, 11, 1.
52 Rana A, Lee Y M, Li X, et al. ACS Catalysis, 2021, 11, 3073.
53 Vijayakumar E, Ramakrishnan S, Sathiskumar C, et al. Chemical Engineering Journal, 2022, 428, 131115.
54 Gao J, Yang H b, Huang X, et al. Chem, 2020, 6, 658.
55 Jung E, Shin H, Lee B H, et al. Nature Materials, 2020, 19, 4.
56 Yuan Y, Zheng Y, Liu J, et al. Microchimica Acta, 2017, 184, 4723.
57 Carneiro J F, Paulo M J, Siaj M, et al. Journal of Catalysis, 2015, 332, 51.
58 Tanabe K. Catalysis Today, 1990, 8, 1.
59 Antonin V S, Assumpção M H M T, Silva J C M, et al. Electrochimica Acta, 2013, 109, 245.
60 Carneiro J F, Paulo M J, Siaj M, et al. ChemElectroChem, 2017, 4, 508.
61 Barros W R P, Wei Q, Zhang G, et al. Electrochimica Acta, 2015, 162, 263.
62 Lin L, Sherrell P, Liu Y, et al. Advanced Energy Materials, 2020, 10, 1903870.
63 Tan C, Cao X, Wu X J, et al. Chemical Reviews, 2017, 117, 9.
64 Zhang H, Lu X F, Wu Z P, et al. ACS Central Science, 2020, 6, 8.
65 Zhang H, Cheng W, Luan D, et al. Angewandte Chemie International Edition, 2021, 60, 24.
66 Li X, Wang C, Liu F, et al. Chemical Engineering Journal, 2021, 404, 126556.
67 Ferreira F, Carvalho A, Moura Í J, et al. Journal of Physics:Condensed Matter, 2017, 30, 3.
68 Fang Y, Pan J, He J, et al. Angewandte Chemie International Edition, 2018, 57, 5.
69 Solomon G, Kohan M G, Vagin M, et al. Nano Energy, 2021, 81, 105664.
70 Zhao X, Wang Y, Da Y, et al. National Science Review, 2020, 7, 8.
71 Kagkoura A, Stangel C, Arenal R, et al. The Journal of Physical Che-mistry C, 2022, 126, 14850.
72 Lin C Y, Zhang D, Zhao Z, et al. Advanced Materials, 2018, 30, 5.
73 Cote A P, Benin A I, Ockwig N W, et al. Science, 2005, 310, 5751.
74 Waller P J, Gandara F, Yaghi O M,Accounts of Chemical Research, 2015, 48, 12.
75 Krishnaraj C, Sekhar Jena H, Bourda L, et al. Journal of American Chemistry Society, 2020, 142, 47.
76 Guo Y, Xu Q, Yang S, et al. Chemistry-an Asian Journal, 2021, 16, 5.
77 Yang S, Cheng Q, Mao J, et al. Applied Catalysis B:Environmental, 2021, 298, 120605.
78 Kou M, Wang Y, Xu Y, et al. Angewandte Chemie International Edition, 2022, 61, 19.
79 Zhao W, Yan P, Li B, et al. Journal of American Chemistry Society, 2022, 144, 22.
80 Xiang Z, Xue Y, Cao D, et al. Angewandte Chemie International Edition, 2014, 53, 9.
81 Wang M, Zhang N, Feng Y, et al. Angewandte Chemie International Edition, 2020, 59, 34.
82 Sun X, Li Y, Su H, et al. Applied Catalysis B:Environmental, 2022, 317, 121706.
83 Svoboda L, Praus P, Lima M J, et al. Materials Research Bulletin, 2018, 100, 322.
84 Torres-Pinto A, Sampaio M J, Silva C G, et al. Applied Catalysis B:Environmental, 2019, 252, 128.
85 Liu W, Song C, Kou M, et al. Chemical Engineering Journal, 2021, 425, 130615.
86 Yu F, Wang Y, Ma H, et al. New Journal of Chemistry, 2018, 42, 16703.
87 Li L, Yang F, Ye G J, et al. Nature Nanotechnology, 2016, 11, 7.
88 Ma W, Alonso-Gonzalez P, Li S, et al. Nature, 2018, 562, 7728.
89 Yan J, Verma P, Kuwahara Y, et al. Small Methods, 2018, 2, 1800212.
90 Zhu M, Sun Z, Fujitsuka M, et al. Angewandte Chemie International Edition, 2018, 57, 8.
91 Ren X, Zhou J, Qi X, et al. Advanced Energy Materials, 2017, 7, 1700396.
92 Shi F, Geng Z, Huang K, et al. Advanced Science, 2018, 5, 8.
93 Lyu F, Wang Q, Choi S M, et al. Small, 2019, 15, 1.
94 Warschauer D. Journal of Applied Physics, 1963, 34, 1853.
95 Hu J, Chen C, Hu T, et al. Journal of Materials Chemistry A, 2020, 8(37), 19484.
96 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 37.
97 Ghidiu M, Naguib M, Shi C, et al. Chemical Communications, 2014, 50, 67.
98 Harris K J, Bugnet M, Naguib M, et al. The Journal of Physical Chemistry C, 2015, 119, 13713.
99 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials, 2015, 27, 23.
100 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces, 2016, 8, 1.
101 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale, 2016, 8, 22.
102 Feng L, Zha X H, Luo K, et al. Journal of Electronic Materials, 2017, 46, 2460.
103 Tao Q, Dahlqvist M, Lu J, et al. Nature Communications, 2017, 8, 14949.
104 Tian Y, Yang C, Que W, et al. Journal of Power Sources, 2017, 369, 78.
105 Zhang Y, Li F. Journal of Magnetism and Magnetic Materials, 2017, 433, 222.
106 Zhao C, Yu C, Zhang M, et al. Advanced Energy Materials, 2017, 7, 1602880.
107 Gao G, O’Mullane A P, Du A. ACS Catalysis, 2016, 7, 494.
108 Chaudhari N K, Jin H, Kim B, et al. Journal of Materials Chemistry A, 2017, 5, 24564.
109 Liu F, Liu Y, Zhao X, et al. Small, 2020, 16, 8.
110 Zhang Y, Zhang X, Cheng C, et al. Chinese Chemical Letters, 2020, 31, 931.
111 Yu M, Liang H, Zhan R, et al. Chinese Chemical Letters, 2021, 32, 2155.
112 Li Z, Zhuang Z, Lv F, et al. Advanced Materials, 2018, 30, 43.
113 Huang X, Liu W, Zhang J, et al. ACS Applied Materials & Interfaces, 2022, 14, 9.
114 Huang X, Song M, Zhang J, et al. Nano Research, 2022, 15, 3927.
115 Liu R, Ran L, Niu B, et al. Journal of Nanoscience and Nanotechnology, 2018, 18, 7.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[8] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[9] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[10] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[11] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[12] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[13] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[14] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[15] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed