Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23100196-10    https://doi.org/10.11896/cldb.23100196
  金属与金属基复合材料 |
氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理
龙武剑1,2,3, 唐懿1,2, 郑淑仪1,2,3, 何闯4,*
1 深圳大学土木与交通工程学院, 广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室, 广东 深圳 518060
3 深圳市低碳建筑材料与技术重点实验室, 广东 深圳 518060
4 台州学院建筑工程学院, 浙江 台州 318000
N-GQDs as Novel Corrosion Inhibitors for Carbon Steel:from Design to Mechanism
LONG Wujian1,2,3, TANG Yi1,2, ZHENG Shuyi1,2,3, HE Chuang4,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
3 Shenzhen Key Laboratory for Low-carbon Construction Material and Technology, Shenzhen 518060, Guangdong, China
4 School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
下载:  全 文 ( PDF ) ( 29152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 缓蚀剂具有成本低、操作简便等优点,广泛应用于金属腐蚀防护领域。石墨烯量子点(GQDs)作为一种新型碳基纳米材料,已被用作碳钢缓蚀剂,但其缓蚀性能仍不理想。本工作设计制备了一种N掺杂GQDs(N-GQDs)作为新型碳钢缓蚀剂,证明了其优异的缓蚀性能,并揭示了其缓蚀机理。具体而言,采用密度泛函理论(DFT)和分子动力学(MD)模拟,设计N-GQDs作为缓蚀剂;采用一步水热法制备出所设计的N-GQDs;采用紫外可见(UV-Vis)光谱和荧光(PL)光谱证实所制备N-GQDs的分散稳定性;采用失重试验和电化学测试探究N-GQDs在1 mol/L HCl溶液中对碳钢的缓蚀性能;结合吸附等温线和腐蚀面分析,揭示N-GQDs缓蚀机理。结果表明,N掺杂使N-GQDs更易吸附在碳钢表面,使其具有更出色的缓蚀能力;N-GQDs表面存在大量基团,使其在HCl溶液中具有良好的长期分散稳定性;200 mg/L N-GQDs对在1 mol/L HCl溶液中浸泡96 h后的Q235碳钢的缓蚀效率高达90.48%,展示出优异的长期缓蚀能力;N-GQDs的缓蚀机理归因于N-GQDs在碳钢表面的物理吸附和化学吸附。本工作有望为新型绿色缓蚀剂的设计和制备提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
唐懿
郑淑仪
何闯
关键词:  石墨烯量子点(GQDs)  N掺杂  盐酸(HCl)  缓蚀性能  碳钢  吸附    
Abstract: Corrosion inhibitors are widely used in the field of metal corrosion protection due to their advantages of low cost and easy operation. Graphene quantum dots (GQDs), as a novel carbon-based nanomaterial, have been employed as corrosion inhibitors for carbon steel, but their corrosion inhibition performance is still unsatisfactory. In this work, N doping GQDs (N-GQDs) are designed and prepared as novel corrosion inhibitors for carbon steel;their excellent corrosion inhibition performance is demonstrated, and the related inhibiting mechanism is revealed. Specifically, density functional theory (DFT) and molecular dynamics (MD) simulations are adopted to design N-GQDs as corrosion inhibitors. The designed N-GQDs are prepared by a one-step hydrothermal method. Ultraviolet-visible (UV-Vis) spectra and photoluminescence (PL) spectra are utilized to confirm the dispersion stability of the prepared N-GQDs. The corrosion inhibition behaviors of N-GQDs for carbon steel in 1 mol/L HCl solution are investigated by weight loss test and electrochemical test. The corrosion inhibition mechanism of N-GQDs is revealed by combining adsorption isotherm with corrosion surface analyses. The results show that N doping makes it easier for N-GQDs to adsorb on the surface of carbon steel, endowing them with better corrosion inhibition potential. A large number of groups exist on the surface of N-GQDs, making them possess good long-term dispersion stability in HCl solution. The corrosion inhibition efficiency of 200 mg/L N-GQDs for Q235 carbon steel after 96 h immersion in 1 mol/L HCl solution is as high as 90.48%, evidencing the excellent long-term corrosion inhibition ability of N-GQDs. The corrosion inhibition mechanism of N-GQDs is attributed to the physical and chemical adsorption of N-GQDs on the carbon steel surface. This work is expected to provide a reference for the design and preparation of new green corrosion inhibitors.
Key words:  graphene quantum dots (GQDs)    N doping    hydrochloric acid (HCl)    corrosion inhibition performance    carbon steel    adsorption
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG174  
基金资助: 国家自然科学基金-山东联合基金(U2006223);台州市科技局项目(23sfa03)
通讯作者:  *何闯,台州学院建筑工程学院副教授、硕士研究生导师。目前主要从事腐蚀防护、碳点规模化应用等方面的研究工作。hechuang@szu.edu.cn;584650078@qq.com   
作者简介:  龙武剑,深圳大学土木与交通工程学院教授、执行院长,博士研究生导师。目前主要从事智能土木工程材料-结构设计及应用一体化研究、纳米改性水泥基复合材料、滨海混凝土材料-结构使用寿命等方面的研究。
引用本文:    
龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
LONG Wujian, TANG Yi, ZHENG Shuyi, HE Chuang. N-GQDs as Novel Corrosion Inhibitors for Carbon Steel:from Design to Mechanism. Materials Reports, 2025, 39(7): 23100196-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100196  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23100196
1 Babaahmadi A, Machner A, Kunther W, et al. Cement and Concrete Research, 2022, 161, 106924.
2 Yin Z Z, Zeng R C, Cui L Y, et al. Journal of Shandong University of Science and Technology (Natural Science) , 2017, 36(2), 57 (in Chinese).
殷正正, 曾荣昌, 崔蓝月, 等. 山东科技大学学报 (自然科学版), 2017, 36(2), 57.
3 Li L J, Zhang Y J, Yang Y H, et al. Corrosion and Protection, 2019, 40(9), 663 (in Chinese).
李玲杰, 张彦军, 杨耀辉, 等. 腐蚀与防护, 2019, 40(9), 663.
4 He C. Gas phase detonation synthesis of carbon dots and its application. Ph. D. Thesis, Dalian University of Technology, China, 2022 (in Chinese).
何闯. 气相爆轰合成碳点及其应用研究. 博士学位论文, 大连理工大学, 2022.
5 He C, E S, Yan H H, et al. Progress in Chemistry, 2022, 34(2), 356 (in Chinese).
何闯, 鄂爽, 闫鸿浩, 等. 化学进展, 2022, 34(2), 356.
6 Liu M L, Chen B B, Li C M, et al. Green Chemistry, 2019, 21(3), 449.
7 Yan Y, Gong J, Chen J, et al. Advanced Materials, 2019, 31(21), 1808283.
8 Roy P, Chen P C, Periasamy A P, et al. Materials Today, 2015, 18(8), 447.
9 Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14), 1620.
10 Li K, Liu W, Ni Y, et al. Journal of Materials Chemistry B, 2017, 5(25), 4811.
11 Lim S Y, Shen W, Gao Z. Chemical Society Reviews, 2015, 44(1), 362.
12 Fernando K A S, Sahu S, Liu Y, et al. ACS Applied Materials & Interfaces, 2015, 7(16), 8363.
13 Li H, Kang Z, Liu Y, et al. Journal of Materials Chemistry, 2012, 22(46), 24230.
14 Hu B J, Huang K, Tang B J, et al. Nano-Micro Letters, 2023, 15(1), 217.
15 Zhang H, Guo H Z, Li D N, et al. Nature Communications, 2024, 15(1), 2980.
16 Liu Q, Zhou T Y. Corrosion and protection, 2015, 36(2), 152 (in Chinese).
刘青, 周桃玉. 腐蚀与防护, 2015, 36(2), 152.
17 Ren S M, Cui M J, Li W S, et al. Journal of Materials Chemistry A, 2018, 6(47), 24136.
18 Haruna K, Saleh T A. Journal of Environmental Chemical Engineering, 2021, 9(1), 104967.
19 Qiang Y J, Zhi H, Guo L, et al. Journal of Molecular Liquids, 2022, 351, 118638.
20 Chen C B, Dong Z L. Russian Journal of Physical Chemistry A, 2022, 96(11), 2451.
21 Verma C, Olasunkanmi L O, Ebenso E E, et al. Journal of Molecular Liquids, 2018, 251, 100.
22 Fernandes C M, Pina V G S S, Alvarez L X, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 599, 124857.
23 Khan G, Basirun W J, Kazi S N, et al. Journal of Colloid and Interface Science, 2017, 502, 134.
24 Gong J, Zhang Z Y, Zeng Z P, et al. Carbon, 2021, 184, 554.
25 Yan Y B, Zhai D, Liu Y, et al. ACS Nano, 2020, 14(1), 1185.
26 Saha S K, Ghosh P, Hens A, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2015, 66, 332.
27 Xu Q Q, Hou D S, Zhang H L, et al. Construction and Building Materials, 2022, 331, 127294.
28 Xia J, Zhuang Y T, Yu Y L, et al. Microchimica Acta, 2017, 184(4), 1109.
29 Li X Q, He C, Yu K K, et al. Surface Technology, 2023, 52(10), 229 (in Chinese).
李雪琪, 何闯, 于坷坷, 等. 表面技术, 2023, 52(10), 229.
30 Cen H Y, Chen Z Y, Guo X P. Surface Technology, 2020, 49(11), 13 (in Chinese).
岑宏宇, 陈振宇, 郭兴蓬. 表面技术, 2020, 49(11), 13.
31 Luo J X, Cheng X, Zhong C F, et al. Journal of Molecular Liquids, 2021, 338, 116783.
32 Ye Y W, Yang D P, Chen H, et al. Journal of Hazardous Materials, 2020, 381, 121019.
33 Omanovic S, Roscoe S G. Journal of Colloid and Interface Science, 2000, 227(2), 452.
34 Jiang B K, Chen A Y, Gu J F, et al. Carbon, 2020, 157, 537.
35 Qiang Y J, Zhang S T, Zhao H C, et al. Corrosion Science, 2019, 161, 108193.
36 Long W J, Li X Q, Xu P, et al. Diamond and Related Materials, 2022, 130, 109401.
37 Tan B C, Xiang B, Zhang S T, et al. Journal of Colloid and Interface Science, 2021, 582, 918.
38 Ye Y W, Zou Y J, Jiang Z L, et al. Journal of Alloys and Compounds, 2020, 815, 152338.
39 Wu S H, Wang J K, Liu T, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2023, 661, 130951.
40 Cen H Y, Chen Z Y, Guo X P. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99, 224.
41 Wang Y, Qiang Y J, Zhi H, et al. Journal of Industrial and Engineering Chemistry, 2023, 117, 422.
[1] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[2] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[3] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[4] 刘平, 王晨, 韩庆文, 苗攀, 马家玉. 半包覆锰基复合锂离子筛的制备与吸附性能[J]. 材料导报, 2025, 39(4): 23110239-7.
[5] 李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
[6] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[7] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[8] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[9] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[10] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[11] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[12] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[13] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[14] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[15] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed