Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23100229-10    https://doi.org/10.11896/cldb.23100229
  无机非金属及其复合材料 |
二维碳基材料在锂硫电池中的研究进展
徐婉琳1,2,†, 冯腾锐1,2,†, 吴琪1,2,*, 夏杰桢1,2, 曹蓉1,2
1 西藏大学理学院, 拉萨 850000
2 西藏大学供氧研究院, 珠峰研究院, 拉萨 850000
Research Progress of Two-dimensional Carbon-based Material in Lithium-Sulfur Battery
XU Wanlin1,2,†, FENG Tengrui1,2,†, WU Qi1,2,*, XIA Jiezhen1,2, CAO Rong1,2
1 School of Science, Xizang University, Lhasa 850000, China
2 Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Xizang University, Lhasa 850000, China
下载:  全 文 ( PDF ) ( 41918KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池(Li-S电池)因其高能量密度和高比容量等优势被公认为是极具前景的先进储能系统之一。但Li-S电池由于复杂的电化学反应机制,仍存在许多未被解决的难题,例如穿梭效应、过高的电化学能垒、硫的低导电性以及硫阴极体积变化等。这些问题导致锂硫电池的实际库仑效率低下、真实容量不能达到理论预期、循环稳定性难以满足使用需求,使得锂硫电池至今未能商业化。而设计合理的电池正极材料,优化功能性隔膜是较为可行的途径。二维碳基材料具有丰富的物理、化学以及电化学性质,具备非常高的可调控性。得益于这些优势,二维碳基材料在锂硫电池中逐渐得到广泛应用。本文综述了包括石墨烯、二维缺陷碳基材料、非金属掺杂碳基材料、金属掺杂碳基材料、非金属碳化物和金属碳化物等多种二维碳基材料在锂硫电池中的研究进展和性能表现,总结了目前仍然存在的一些问题,并对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐婉琳
冯腾锐
吴琪
夏杰桢
曹蓉
关键词:  锂硫电池  二维碳基材料  穿梭效应  导电性  改性    
Abstract: Lithium-sulfur batteries (Li-S batteries) are regarded as one of the most promising modern energy storage systems due to their high theoretical energy density and specific capacity. However, their commercial application still faces huge challenges, such as fast capacity decay, poor cycle stability and short lifetime, originating from the shuttle effect, high electrochemical energy barrier, low conductivity of sulfur species, and volume change of sulfur cathode. Optimizing functional separators and designing appropriate positive electrode materials for batteries is a feasible approach. Two-dimensional (2D) carbon-based materials are now widely used in Li-S batteries as sulfur host materials, since they are highly controllable and have a wide range of physical, chemical, and electrochemical characteristics. This paper reviews the research progress of 2D carbon-based materials in Li-S batteries, including graphene, 2D defective carbon-based materials, non-metallic doped carbon-based materials, metal-doped carbon-based materials, non-metallic carbides and metal carbides, and their corresponding catalytic performance. Finally, we highlight a few issues that still require addressing and forecast the future development in the application of Li-S batteries.
Key words:  lithium-sulfur battery    two-dimensional carbon-based material    shuttle effect    conductivity    modification
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  O4-1  
基金资助: 国家自然科学基金(22168036);西藏自治区科技计划项目(XZ202201YD0020C);西藏自治区自然科学基金重点项目(XZ202301ZR0026G)
通讯作者:  *吴琪,国家海外高层次人才,西藏大学理学院特聘研究员、硕士研究生导师。主要围绕计算物理和计算材料科学领域开展前瞻性、原创性问题研究,具体包括低维纳米材料的模拟与设计、高原特色环境与材料理论计算的研究工作,专注于电化学析氢制氧以及太阳能电解水制氢制氧理论研究。wuqi@utibet.edu.cn   
作者简介:  徐婉琳,现为西藏大学理学院硕士研究生,在吴琪特聘研究员的指导下进行研究。目前主要研究领域为新型电池的理论设计与研究,如Li-S电池、Na-K电池等。冯腾锐,现为西藏大学理学院硕士研究生,在吴琪特聘研究员的指导下进行研究,目前主要研究领域为新型电池的理论设计与研究,如Li-S电池、Na-K电池等。
†共同第一作者
引用本文:    
徐婉琳, 冯腾锐, 吴琪, 夏杰桢, 曹蓉. 二维碳基材料在锂硫电池中的研究进展[J]. 材料导报, 2025, 39(7): 23100229-10.
XU Wanlin, FENG Tengrui, WU Qi, XIA Jiezhen, CAO Rong. Research Progress of Two-dimensional Carbon-based Material in Lithium-Sulfur Battery. Materials Reports, 2025, 39(7): 23100229-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100229  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23100229
1 Deng R, Wang M, Yu H, et al. Energy & Environmental Materials, 2022, 5(3), 777.
2 Li Y, Guo S. Matter, 2021, 4(4), 1142.
3 Angulakshmi N, Dhanalakshmi R B, Sathya S, et al. Batteries & Supercaps, 2021, 4(7), 1064.
4 Liang Z, Shen J, Xu X, et al. Advanced Materials, 2022, 34(30), 2200102.
5 Gu X, Zhang S, Hou Y. Chinese Journal of Chemistry, 2016, 34(1), 13.
6 Li Z, Sun H, Pang Y, et al. Materials, 2021, 14(4), 861.
7 Xie S, Chen X, Wang C, et al. Small, 2022, 18(18), 2200395.
8 Luo S, Yao M, Lei S, et al. Nanoscale, 2017, 9(14), 4646.
9 Shao Q, Wu Z S, Chen J. Energy Storage Materials, 2019, 22, 284.
10 Deng N, Feng Y, Wang G, et al. Chemical Engineering Journal, 2020, 401, 125976.
11 Tang J, Zhao Q, Li F, et al. Nanoscale, 2021, 13(45), 18883.
12 Li F, Anjarsari Y, Wang J, et al. Carbon Letters, 2023, 33(5), 1321.
13 Wang J, Ma F, Sun M. RSC Advances, 2017, 7(27), 16801.
14 Wang X, Wang Z, Chen L. Journal of Power Sources, 2013, 242, 65.
15 Wang H, Yang Y, Liang Y, et al. Nano Letters, 2011, 11(7), 2644.
16 Baumann A E, Downing J R, Burns D A, et al. ACS Applied Materials & Interfaces, 2020, 12(33), 37173.
17 Li R, Zhang M, Fu X, et al. ACS Applied Electronic Materials, 2022, 4(7), 3263.
18 Guan W, Wang T, Liu Y, et al. Advanced Energy Materials, 2023, 13(45), 2302565.
19 Yi Z, Su F, Huo L, et al. Applied Surface Science, 2020, 503, 144446.
20 Tong Z, Huang L, Liu H, et al. Advanced Functional Materials, 2021, 31(11), 2010455.
21 Zhang W, Li Y, Lv H, et al. Small Structures, 2023, 4(3), 2200244.
22 Xiong D G, Zhang Z, Huang X Y, et al. Journal of Energy Chemistry, 2020, 51, 90.
23 Pourali Z, Yaftian M R, Sovizi M R. Materials Chemistry and Physics, 2018, 217, 117.
24 Xia J, Cao R, Zhao L, et al. Journal of Colloid and Interface Science, 2023, 630, 317.
25 Liang Z, Yang D, Tang P, et al. Advanced Energy Materials, 2021, 11(5), 2003507.
26 Park J S, Park D Y, Yang S M, et al. Carbon, 2022, 196, 304.
27 Sun W, Song Z, Feng Z, et al. Nano-Micro Letters, 2022, 14(1), 222.
28 Dong Y, Xu B, Hu H, et al. Physical Chemistry Chemical Physics, 2021, 23(23), 12958.
29 Amaral M M, Mujib S B, Santos E A, et al. Journal of Energy Storage, 2023, 72, 108388.
30 Wu J, Ye T, Wang Y, et al. ACS Nano, 2022, 16(10), 15734.
31 Zhou F, Li Z, Luo X, et al. Nano Letters, 2018, 18(2), 1035.
32 Al Salem H, Chitturi V R, Babu G, et al. RSC Advances, 2016, 6(111), 110301.
33 Zhou F, Song L T, Lu L L, et al. ChemNanoMat, 2016, 2(10), 937.
34 Wang J, Wang L, Li Z, et al. Journal of Electronic Materials, 2023, 52(6), 3526.
35 Abbas S A, Ding J, Wu S H, et al. ACS Nano, 2017, 11(12), 12436.
36 Fang D, Wang Y, Liu X, et al. ACS Nano, 2019, 13(2), 1563.
37 Fang M, Chen Z, Liu Y, et al. Journal of Materials Chemistry A, 2018, 6(4), 1630.
38 Lei T, Chen W, Lv W, et al. Joule, 2018, 2(10), 2091.
39 Pei F, Lin L, Fu A, et al. Joule, 2018, 2(2), 323.
40 Chen W, Lei T, Lv W, et al. Advanced Materials, 2018, 30(40), 1804084.
41 Feng G, Liu X, Wu Z, et al. Journal of Alloys and Compounds, 2020, 817, 152723.
42 García-Soriano F J, Para M L, Luque G L, et al. Journal of Solid State Electrochemistry, 2020, 24, 2341.
43 Huang J Q, Xu Z L, Abouali S, et al. Carbon, 2016, 99, 624.
44 Fan Y, Yang Z, Hua W, et al. Advanced Energy Materials, 2017, 7(13), 1602380.
45 Zhang Y, Ma L, Tang R, et al. Applied Surface Science, 2022, 585, 152498.
[1] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[2] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[3] 林家茂, 姚美意, 陈哲斌, 徐诗彤, 胡丽娟. 生物医用锆基合金的研究进展[J]. 材料导报, 2025, 39(5): 24020141-10.
[4] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[5] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[6] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[7] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[8] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[9] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[10] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[13] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[14] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[15] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed