Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23110222-11    https://doi.org/10.11896/cldb.23110222
  无机非金属及其复合材料 |
硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究
姜彦杰, 刘浩天, 刘海峰*, 车佳玲, 杨维武
宁夏大学土木与水利工程学院, 银川 750021
Experimental Study on the Uniaxial Compressive Mechanical Properties of Desert Sand Concrete After Sulfate Freeze-thawing
JIANG Yanjie, LIU Haotian, LIU Haifeng*, CHE Jialing, YANG Weiwu
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 36827KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究沙漠砂混凝土(DSC)在硫酸盐冻融环境下抗冻性能及力学性能劣化规律,以沙漠砂替代率(DSRR,0%、20%、40%)、硫酸盐溶液质量分数(3%、5%、7%)及冻融循环次数(0、25、50、75、100、125次)为试验变量进行混凝土单轴受压试验,研究硫酸盐冻融后沙漠砂混凝土质量、动弹性模量、轴心抗压强度、峰值应变、弹性模量及损伤等的变化规律;结合X射线衍射(XRD)、扫描电子显微镜(SEM)试验分析硫酸盐冻融环境下沙漠砂混凝土的劣化机理。试验结果表明:冻融循环初期,硫酸盐冻融环境下混凝土损伤较小。随着冻融循环次数的增加,混凝土性能劣化加剧。在质量分数为7% 的Na2SO4溶液中,冻融后混凝土质量、动弹模量、抗压强度、弹性模量降低幅度最大。沙漠砂替代率由0%增大至40%时,硫酸盐冻融环境下混凝土抗冻性能增强。基于Lemaitre应变等价性原理与连续损伤理论,建立硫酸盐冻融环境下沙漠砂混凝土损伤本构关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜彦杰
刘浩天
刘海峰
车佳玲
杨维武
关键词:  沙漠砂混凝土  硫酸盐冻融  应力-应变全曲线  Weibull分布  损伤本构关系  微观分析    
Abstract: In order to investigate the frost resistance and mechanical properties deteriorationlaw of desert sand concrete (DSC) under sulfate freeze-thaw environment, the uniaxial compression tests of concrete were carried out with desert sand replacement rate (DSRR, 0%, 20%, and 40%), sulfate solution mass fractions (3%, 5%, and 7%), and the number of freeze-thaw cycles (0, 25, 50, 75, 100, and 125) as test variables. The variation laws of mass, dynamic elastic modulus, axial compressive strength, peak strain, elastic modulus, and damage of DSC were analyzed. The deterioration mechanism of DSC under sulfate freeze-thaw environment was further investigated by combining X-ray diffraction (XRD) and scanning electron microscope (SEM) tests. The test results showed that the damage of concrete after salt freezing cycles was small at early stage of freeze-thaw cycle, and then the performance deterioration of DSC increased with the increase of the number of freeze-thaw cycles. The mass, dynamic elastic modulus, compressive strength and elastic modulus of DSC after freeze-thawing decreases the most when the mass fraction of the sodium sulfate solution was equal to 7%. The frost resistance of concrete in sulfate freeze-thaw environments gradually increased as the DSRR increase from 0% to 40%. The constitutive relationship of DSC in a sulfate freeze-thaw environment was established based on the Lemaitre assumption of strain equivalence and continuum damage theory.
Key words:  desert sand concrete (DSC)    sulfate freeze-thaw    stress-strain curve    Weibull distribution    damage constitutive relationship    microstructure
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52168034);宁夏自然基金(2023AAC03039);宁夏高等学校一流学科建设(水利工程学科)资助项目(NXYLXK2021A03)
通讯作者:  *刘海峰,宁夏大学土木与水利工程学院教授、博士研究生导师,目前主要从事材料和结构灾变行为方面的研究工作。liuhaifeng1557@163.com   
作者简介:  姜彦杰,现为宁夏大学土木与水利工程学院硕士研究生。主要从事硫酸盐冻融环境下沙漠砂混凝土性能研究。
引用本文:    
姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
JIANG Yanjie, LIU Haotian, LIU Haifeng, CHE Jialing, YANG Weiwu. Experimental Study on the Uniaxial Compressive Mechanical Properties of Desert Sand Concrete After Sulfate Freeze-thawing. Materials Reports, 2025, 39(7): 23110222-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110222  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23110222
1 Bendixen M, Best J, Hackney C, et al. Nature, 2019, 571, 29.
2 Su X P, Wang Q. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1), 112 (in Chinese).
宿晓萍, 王清. 吉林大学学报(工学版), 2015, 45(1), 112.
3 Chen D S, Deng Y, Shen J Y, et al. Construction and Building Materials, 2021, 304, 124617.
4 Xiao Q H, Li Q, Cao Z Y, et al. Construction and Building Materials, 2019, 200, 344.
5 Niu D T, Jiang L. Journal of Sichuan University (Engineering science edition), 2016, 48(3), 71 (in Chinese).
牛荻涛, 姜磊. 四川大学学报(工程科学版), 2016, 48(3), 71.
6 Wu Junchen, Shen Xiangdong. Journal of Functional Materials, 2017, 48(12), 12182 (in Chinese).
吴俊臣, 申向东. 功能材料, 2017, 48(12), 12182.
7 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete:GB/T 50082-2009, China Architecture and Building Press, China, 2009 (in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082-2009, 中国建筑工业出版社, 2009.
8 Jiao C J, Li S, Gan Y C. Journal of Southeast University (Natural Science Edition), 2020, 50 (2), 222 (in Chinese).
焦楚杰, 李松, 甘元初. 东南大学学报(自然科学版), 2020, 50(2), 222.
9 Cry M, Lawrence P, Ringot E. Cement and Concrete Research, 2005, 4(35), 719.
10 Liu Y J. Experimental study on flexural and axial compressive strength of C30 desert sand concrete under freeze-thaw cycles. Master's Thesis, Ningxia University, China, 2023 (in Chinese).
刘一江. 冻融循环作用下C30沙漠砂混凝土抗折与轴心抗压强度试验研究. 硕士学位论文, 宁夏大学, 2023.
11 Wu J, Jing X H, Wang Z. Construction and Building Materials, 2017, 134, 210.
12 Wu Q Y, Ma Q Y, Zhang J S. Construction and Building Materials, 2022, 348, 128668.
13 Zhang X P, Zhang R L, Yang B, et al. Materials Reports, 2024, 38(5), 209 (in Chinese).
张学鹏, 张戎令, 杨斌, 等. 材料导报, 2024, 38(5), 209.
14 Gan L, Xu W C, Shen Z Z, et al. Journal of Building Engineering, 2023, 71, 106469.
15 Yao Y Z, Liu C, Liu H W, et al. Construction and Building Materials, 2023, 388, 131718.
16 Cao F B, Zhang X F, Yang X G, et al. Journal of Building Structures, 2022, 43(S1), 362 (in Chinese).
曹芙波, 张秀芳, 杨晓刚, 等. 建筑结构学报, 2022, 43(S1), 362.
17 Yuan J, Liu Y, Tan Z C, et al. Construction and Building Materials, 2016, 108, 129.
18 Luo F J, He L, Pan Z, et al. Construction and Building Materials, 2013, 47, 131.
19 Liu H F, Li L Y, Tao R G, et al. Physics and Chemistry of the Earth, 2022, 128, 103220.
20 Xu J J, Guo J L, Gan D, et al. Acta Materiae Compositae Sinica, 2024, 41(1), 348 (in Chinese).
许建疆, 郭军林, 甘丹, 等. 复合材料学报, 2024, 41(1), 348.
21 Zhang M H, Zhu X Z, Shi J Y, et al. Construction and Building Materials, 2022, 327, 127014.
22 Dong W, Xiao Y, Su Y, et al. Advanced Engineering Sciences, 2020, 52(3), 86 (in Chinese).
董伟, 肖阳, 苏英, 等. 工程科学与技术, 2020, 52(3), 86.
23 Yuan L D. Experimental study on the durability of concrete under the combined action of sulfate erosion and freeze-thaw cycle. Master's Thesis, Xi'an University of Architecture and Technology, China, 2015(in Chinese).
苑立冬. 硫酸盐侵蚀与冻融循环共同作用下混凝土耐久性试验研究. 硕士学位论文, 西安建筑科技大学, 2015.
24 Zheng C L, Zhao Y D, Hou Y F, et al. Journal of Materials Science & Engineering, 2023, 41(4), 672 (in Chinese).
郑传磊, 赵亚娣, 侯玉飞, 等. 材料科学与工程学报, 2023, 41(4), 672.
25 Liu H F, Ma Y C, Zhang R Q, et al. Journal of Harbin Institute of Technology, 2021, 53(3), 101 (in Chinese).
刘海峰, 马映昌, 张润奇, 等. 哈尔滨工业大学学报, 2021, 53(3), 101.
26 Mazars J, Pijaudier Cabot G. Journal of Engineering Mechanics, 1989, 115(2), 345.
27 Wang B X, Wang F, Wang Q. Construction and Building Materials, 2018, 173, 332.
28 Li Y L, Guo H Y, Zhou H, et al. Construction and Building Materials, 2022, 345, 128171.
29 Long G C, Liu H, Ma K L, et al. Journal of Central South University (Science and Technology), 2018, 49(8), 1884 (in Chinese).
龙广成, 刘赫, 马昆林, 等. 中南大学学报(自然科学版), 2018, 49(8), 1884.
30 Gan L, Liu Y, Shen Z Z, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(11), 134 (in Chinese).
甘磊, 刘源, 沈振中, 等. 华中科技大学学报(自然科学版), 2023, 51(11), 134.
31 Liu F, You Z P, Yang X, et al. Construction and Building Materials, 2018, 181, 369.
32 Neville Adam. Cement and Concrete Research, 2004, 34(8), 1275.
33 Wang J B, Che Z H, Hou Z Y, et al. Materials Reports, 2024, 38(16), 137 (in Chinese).
王家滨, 车志豪, 侯泽宇, 等. 材料导报, 2024, 38(16), 137.
34 Liu C, Yao Y Z, Liu H W. Journal of Building Materials, 2022, 11(25), 1128 (in Chinese).
刘超, 姚羿舟, 刘化威. 建筑材料学报, 2022, 11(25), 1128.
35 Liu K W, Cheng X X, Sun D S, et al. Journal of Building Materials, 2019, 22(2), 179 (in Chinese).
刘开伟, 程星星, 孙道胜, 等. 建筑材料学报, 2019, 22(2), 179.
[1] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[2] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[3] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[4] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[5] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[6] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[7] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[8] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[9] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[10] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[11] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[12] 雷蕾, 何晓聪, 高爱凤, 赵得锁. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815.
[13] 江世永,陶 帅,姚未来,吴世娟,蔡 涛. 高韧性纤维混凝土单轴受压性能及尺寸效应[J]. 《材料导报》期刊社, 2017, 31(24): 161-168.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed