Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23100140-8    https://doi.org/10.11896/cldb.23100140
  高分子与聚合物基复合材料 |
高分子絮凝剂PDTAM去除水中Cr(Ⅵ)的抗环境干扰性研究
杨晓敏, 王刚*, 王雪, 桑芳娟, 杨凯
兰州交通大学环境与市政工程学院, 兰州 730070
Resistance to Environmental Disturbance of Macromolecule Flocculant PDTAM in Cr(Ⅵ) Removal from Water Samples
YANG Xiaomin, WANG Gang*, WANG Xue, SANG Fangjuan, YANG Kai
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 9496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探究高分子重金属絮凝剂聚二硫代羧基化丙烯酰胺(PDTAM)去除Cr(Ⅵ)的性能,以实验室配制的含Cr(Ⅵ)模拟废水样为考察对象,通过PDTAM投加量、絮凝水力条件和初始pH值等确定了PDTAM去除废水中Cr(Ⅵ)的最佳絮凝条件;参考实际含Cr(Ⅵ)废水中常见的无机物质、有机物质和浊度作为环境干扰因素,研究了其对PDTAM处理含Cr(Ⅵ)废水的影响。结果表明,当水样初始pH值为3.0时,在最佳絮凝水力条件为120 r/min快搅1.5 min、40 r/min慢搅15 min下投加540 mg/L的PDTAM,Cr(Ⅵ)的最高去除率可达97.51%。在PDTAM低投加量下共存物质对去除Cr(Ⅵ)皆存在较强的抑制作用,该抑制作用可通过增加PDTAM的投加量来减弱或消除;但是共存离子IO3-、BrO3-、Ba2+和Ni2+对PDTAM去除Cr(Ⅵ)仍存在较强的抑制作用。红外光谱、扫描电镜和能谱分析揭示了PDTAM对Cr(Ⅵ)的去除机理主要有氧化还原、螯合沉淀和以吸附架桥为主的絮凝沉降等作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨晓敏
王刚
王雪
桑芳娟
杨凯
关键词:  高分子絮凝剂  含Cr(Ⅵ)废水  共存物质  絮凝  氧化还原    
Abstract: A macromolecule heavy metal flocculant, named polydithiocarboxyl acrylamide (PDTAM), was used to treat the sample of simulated wastewater containing Cr(Ⅵ) prepared in the laboratory. The removal performance and environmental disturbance resistance of PDTAM for Cr(Ⅵ) were investigated. The optimal flocculation conditions for Cr(Ⅵ) removal with PDTAM from water sample were determined through some parameters, such as the dosage of PDTAM, hydraulic conditions of flocculation, and initial pH value. Common inorganic substances, organic compounds, and turbidity were studied as environmental interference factors in actual Cr(Ⅵ)-containing wastewater. The experimental results show that the highest Cr(Ⅵ) removal rate was 97.51% under rapid stirring (120 r/min) for 1.5 min, slow stirring (40 r/min) for 15 min, pH 3.0, and PDTAM dosage of 540 mg/L. At low PDTAM dosages, coexisting substances had a strong inhibition on Cr(Ⅵ) removal, but the influence would be weakened or eliminated by increasing the dosage of PDTAM, except for IO3-, BrO3-, Ba2+ and Ni2+, which still exhibited a strong inhibition on Cr(Ⅵ) removal. Infrared spectroscopy, scanning electron microscopy and energy spectrum analysis revealed that the removal mechanism of PDTAM for Cr(Ⅵ) mainly involved oxidation and reduction, chelation precipitation, and flocculation sedimentation mainly by adsorption bridging.
Key words:  macromolecule flocculant    Cr(Ⅵ)-containing wastewater    coexisting substance    flocculation    oxidation and reduction
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB34  
  X703  
  TQ085  
基金资助: 国家自然科学基金(51368030)
通讯作者:  *王刚,兰州交通大学环境与市政工程学院教授、硕士研究生导师。目前主要从事污染控制化学、重金属废水处理材料等方面的研究。gangw99@mail.lzjtu.cn   
作者简介:  杨晓敏,兰州交通大学环境与市政学院硕士研究生,在王刚教授、杨凯副教授的指导下进行研究。目前主要研究领域为水污染控制化学。
引用本文:    
杨晓敏, 王刚, 王雪, 桑芳娟, 杨凯. 高分子絮凝剂PDTAM去除水中Cr(Ⅵ)的抗环境干扰性研究[J]. 材料导报, 2025, 39(7): 23100140-8.
YANG Xiaomin, WANG Gang, WANG Xue, SANG Fangjuan, YANG Kai. Resistance to Environmental Disturbance of Macromolecule Flocculant PDTAM in Cr(Ⅵ) Removal from Water Samples. Materials Reports, 2025, 39(7): 23100140-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100140  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23100140
1 De Sousa C M, Cardoso V L, Batista F R X. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114602.
2 Huang J, Wu G, Zeng R, et al. Toxicology Research, 2017, 6(3), 324.
3 Fan L, Zhang J Q, Cheng X, et al. Technology of Water Treatment, 2009, 35(1), 30 (in Chinese).
范力, 张建强, 程新, 等. 水处理技术, 2009, 35(1), 30.
4 Leonard J, Sivalingam S, Srinadh R V, et al. Environmental Chemistry and Ecotoxicology, 2023, 5, 98.
5 Zhao X, Liang H, Wang Z, et al. Environmental Research, 2023, 219, 115015.
6 Zhang H, Ma R, Gong L, et al. Materials Reports, 2022, 36(8), 187 (in Chinese).
张航, 马蓉, 弓亮, 等. 材料导报, 2022, 36(8), 187.
7 Xie Y X, Yang Q, Chen Y X, et al. Materials Reports, 2021, 35(16), 16184 (in Chinese).
谢艳新, 杨倩, 陈雅仙, 等. 材料导报, 2021, 35(16), 16184.
8 Shekhar Sarker S, Akter T, Parveen S, et al. Arabian Journal of Chemistry, 2023, 16(10), 105085.
9 Wang Y X, Zhan J J. Applied Chemical Industy, 2022, 51(11), 3128 (in Chinese).
王玉欣, 占敬敬. 应用化工, 2022, 51(11), 3128.
10 Huang Y K, Yang W P, Xu J J, et al. Water & Wastewater Engineering, 2021, 57(2), 21 (in Chinese).
黄禹坤, 杨武鹏, 徐炯基, 等. 给水排水, 2021, 57(2), 21.
11 Tang J, Wang Z X, Xu X H. Environmental Science, 2013, 34(7), 2650 (in Chinese).
汤洁, 王卓行, 徐新华. 环境科学, 2013, 34(7), 2650.
12 Zhao S, Chen Z, Shen J, et al. Chemical Engineering Journal, 2017, 322, 646.
13 He R, Wang Z, Deng F, et al. Separation and Purification Technology, 2023, 311, 123176.
14 Li J, Liu T B, Zhu Y X, et al. Materials Reports, 2020, 34(21), 21045 (in Chinese).
李靖, 刘天宝, 朱亚鑫, 等. 材料导报, 2020, 34(21), 21045.
15 Zhao M, Wang X, Wang S, et al. Journal of Hazardous Materials, 2023, 452, 131282.
16 Wang G, Du F L, Chang Q, et al. Environmental Science, 2015, 36(5), 1707 (in Chinese).
王刚, 杜凤龄, 常青, 等. 环境科学, 2015, 36(5), 1707.
17 Gao Q, Zhang D W, Xu H, et al. Environmental Science, 2018, 39(8), 3704 (in Chinese).
高倩, 张大为, 徐慧, 等. 环境科学, 2018, 39(8), 3704.
18 Liu F L. Preparation and performance of polydithiocarboxyl acrylamide used as macromolecular heavy metal flocculant. Master's Thesis, Lanzhou Jiaotong University, China, 2019 (in Chinese).
刘福龙. 高分子重金属絮凝剂聚二硫代羧基化丙烯酰胺的制备及其性能研究. 硕士学位论文, 兰州交通大学, 2019.
19 Chang Q. Acta Scientiae Circumstantiae, 2015, 35(1), 1 (in Chinese).
常青. 环境科学学报, 2015, 35(1), 1.
20 State Environmental Protection Administration. Water and wastewater monitoring and analysis methods (Fourth edition), China Environmental Science Press, China, 2002, pp. 345 (in Chinese).
国家环保总局. 水和废水监测分析方法(第四版), 中国环境科学出版社, 2002, pp. 345.
21 Liao J, Wu Y, Chen X, et al. Journal of Hazardous Materials, 2022, 440, 129812.
22 Zhou Y Q, Wang G, Yang X M, et al. Acta Scientiae Circumstantiae, 2023, 43(5), 271 (in Chinese).
周雅琦, 王刚, 杨晓敏, 等. 环境科学学报, 2023, 43(5), 271.
23 Yang K. Preparations of novel chelating polymers and their performances for trapping heavy metalions. Ph. D. Thesis, Lanzhou Jiaotong University, China, 2019 (in Chinese).
杨凯. 新型螯聚物的制备及其捕集重金属的性能研究. 博士学位论文, 兰州交通大学, 2019.
24 Wang G, Chang Q, Han X, et al. Journal of Hazardous Materials, 2013, 248-249, 115.
25 Fang J L. Electroplating complexes—theory and application, Chemical Industry Press, China, 2008, pp. 481 (in Chinese).
方景礼. 电镀配合物:理论与应用, 化学工业出版社, 2008, pp. 481.
26 Wang L L, Wang G, Yang L J, et al. China Environmental Science, 2022, 42(3), 1209 (in Chinese).
王露露, 王刚, 杨丽娟, 等. 中国环境科学, 2022, 42(3), 1209.
27 Wang G, Li J, Yuan H F, et al. China Environmental Science, 2019, 39(6), 2402 (in Chinese).
王刚, 李嘉, 袁海飞, 等. 中国环境科学, 2019, 39(6), 2402.
28 Gheju M, Balcu I. Journal of Hazardous Materials, 2011, 196, 131.
29 Rajan A, Yazhini C, Dhileepan M D, et al. Chemosphere. 2024, 352, 141473.
30 Wu Z Y, Zhang H, Ali E, et al. Environmental Technology & Innovation. 2023, 30, 103092.
31 Lu Y Q, Deng Z H. Practical infrared spectra analysis, Electronic Industry Press, China, 1989, pp. 200 (in Chinese).
卢涌泉, 邓振华. 实用红外光谱解析, 电子工业出版社, 1989, pp. 200.
32 Liao Q Q, Wang Z Y, Li Y J, et al. Spectroscopy and Spectral Analysis, 2009, 29(3), 829 (in Chinese).
廖强强, 王中瑗, 李义久, 等. 光谱学与光谱分析, 2009, 29(3), 829.
[1] 尹升华, 曹永, 吴爱祥, 侯永强, 杨世兴. 料浆浓度与絮凝剂单耗对膏体堆存渗透性及破坏研究[J]. 材料导报, 2022, 36(24): 21070202-6.
[2] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[3] 岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
[4] 赵恒, 李望, 牛泽鹏, 朱晓波, 邢宝林. 赤泥制备聚合硫酸铝铁及其处理废水的研究[J]. 材料导报, 2020, 34(21): 21038-21044.
[5] 毕研刚, 许泽军, 贾欣茹, 李雁, 李武松, 刘聪聪. 树枝状和超支化聚酰胺-胺在我国油田化学的应用进展*[J]. 《材料导报》期刊社, 2017, 31(13): 63-68.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed