Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24070118-6    https://doi.org/10.11896/cldb.24070118
  无机非金属及其复合材料 |
层状堆叠对α-石墨炔热电输运特性的影响
蒋旭浩, 刘远超*, 李耑, 徐一帆, 刘新昊, 李梓硕
北京石油化工学院机械工程学院,北京 102617
Effect of Layer Stacking on the Thermoelectric Transport Properties of α-Graphyne
JIANG Xuhao, LIU Yuanchao*, LI Zhuan, XU Yifan, LIU Xinhao, LI Zishuo
School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
下载:  全 文 ( PDF ) ( 5508KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于第一性原理方法,研究了层状堆叠对α-石墨炔热电输运性能的影响。结果表明,Ab堆叠是石墨炔最稳定的堆叠方式,室温下层状堆叠后石墨炔的热导率有所提高,从5.87 W/(m·K)提升至17.43 W/(m·K),热输运性能得到了显著提升。在电学性质上,堆叠后α-石墨炔的Dirac锥点被打开,形成小带隙,大幅提升了其电输运能力,功率因数从0.011 W/(m·K2)提升至0.165 W/(m·K2),电学性质的增强完全抵消了热导率提高所带来的负面影响,此时最大热电优值为2.834,热电转换效率得到显著增强,表明通过层状堆叠的调控方式可有效提升石墨炔的热电输运性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋旭浩
刘远超
李耑
徐一帆
刘新昊
李梓硕
关键词:  石墨炔  层状堆叠  电导率  热电优值  第一性原理    
Abstract: Based on first-principles methods, the effects of layer stacking on the thermal and electrical transport properties of α-structured graphyne were investigated. The results demonstrate that Ab stacking is the most stable stacking configuration for graphyne. Layer stacking at room temperature enhances the thermal conductivity of graphyne, increasing it from 5.87 W/(m·K) to 17.43 W/(m·K), thereby significantly improving its thermal transport performance. In terms of electrical properties, layer stacking opens the Dirac cone of α-graphyne, creating a small band gap and substantially enhancing its electrical transport capacity. The power factor increases from 0.011 W/(m·K2) to 0.165 W/(m·K2). The enhancement in electrical properties completely offsets the negative impact brought by the increased thermal conductivity. At this point, the maximum thermoelectric figure of merit (ZTmax) reaches 2.834, resulting in a significant enhancement of the thermoelectric conversion efficiency. These findings indicate that modulating the thermal and electrical transport properties of graphyne through layer stacking can be an effective approach.
Key words:  graphyne    layer stacking    conductivity    thermoelectric figure of merit    first-principle
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB34  
  O469  
基金资助: 国家自然科学基金(51106012)
通讯作者:  *刘远超,博士,北京石油化工学院机械工程学院副教授、硕士研究生导师。目前主要从事能源高效综合利用与节能技术、微纳尺度传热学等方面的研究。liuyuanchao@bipt.edu.cn   
作者简介:  蒋旭浩,硕士,目前主要研究领域为二维材料石墨炔的热电输运特性。
引用本文:    
蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
JIANG Xuhao, LIU Yuanchao, LI Zhuan, XU Yifan, LIU Xinhao, LI Zishuo. Effect of Layer Stacking on the Thermoelectric Transport Properties of α-Graphyne. Materials Reports, 2025, 39(12): 24070118-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070118  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24070118
1 Miguel A, Álvaro C, Leyre C, et al. Energy Conversion and Management, 2020, 205, 112376.
2 Yang X X, Dai Z H, Zhao Y C, et al. Physical Chemistry Chemical Physics, 2018, 20, 15980.
3 Li G X, Li Y L, Liu H B, et al. Chemical Communications, 2010, 46, 3256.
4 Yu Z H, Zhang L F, Wu J, et al. Acta Physica Sinica, 2023, 72(5), 057301 (in Chinese).
余泽浩, 张力发, 吴靖, 等. 物理学报, 2023, 72(5), 057301.
5 Somayeh B. European Physical Journal B, 2016, 89, 1.
6 Kang B T, Lee J Y. Carbon, 2015, 84, 246.
7 Chi B Q, Liu Y, Xu J C, et al. Acta Physica Sinica, 2016, 65(13), 77(in Chinese).
迟宝倩, 刘轶, 徐京城, 等. 物理学报, 2016, 65(13), 77.
8 Jesse M, Mark L. Applied Physics Letters, 2013, 102(9), 093103.
9 Ho J H, Lu C L, Huang C C, et al. Physical Review B, 2006, 74, 085406.
10 Su L Z, Wang D Y, Wang S N, et al. Science, 2022, 375(6587), 1385.
11 Zeng J W, He X, Liang S J, et al. Nano Letters, 2018, 18(12), 7538.
12 Ohkubo I, Mori T. Chemistry of Materials, 2014, 26(8), 2532.
13 Ding T. Theoretical study on layer thickness and twisting control of two-dimensional SnTe thermoelectric properties. Master’s Thesis, Shenzhen University, China, 2020(in Chinese).
丁腾. 二维SnTe热电性能的层厚及扭转调控的理论研究. 硕士学位论文, 深圳大学, 2020.
14 Leenaerts O, Partoens B, Peeters F M. Applied Physics Letters, 2013, 103, 013105.
15 Kresse G, Hafner J. Physical Review B, 1993, 47(1), 558.
16 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787.
17 Blöchl P E, Jepsen O, Andersen O K. Physical Review B, 1994, 49(23), 16223.
18 Baroni S, De Gironcoli S, Dal C A, et al. Reviews of Modern Physics, 2001, 73(2), 515.
19 Li W, Carrete J, Katcho N A, et al. Computer Physics Communications, 2014, 185(6), 1747.
20 Huang S Z. Theoretical study on thermoelectric performance of two-dimensional materials containing chalcogen group elements. Ph.D. Thesis, University of Electronic Science and Technology of China, China, 2023 (in Chinese).
黄嗣昭. 含硫族元素二维材料热电性能的理论研究. 博士学位论文, 电子科技大学, 2023.
21 Bardeen J, Shockley W S. Physical Review, 1950, 80(1), 72.
22 Zhang Y, Pei Q, Wang C. Applied Physics Letters, 2012, 101(8), 081909.
23 Julia B, Tapash C. The Journal of Physical Chemistry C, 2011, 115, 24666.
24 Maznev A A, Wright O B. American Journal of Physics, 2014, 82(11), 1062.
25 Patrick K S, Simon R P, Pawel K. Physical Review B, 2002, 65, 144306.
26 Goldsmid H J, Sharp J W. Journal of Electronic Materials, 1999, 28, 869.
27 Kim H S, Gibbs Z M, Tang Y L, et al. APL Materials, 2015, 3(4), 041506.
28 Sun L, Jiang P H, Liu H J, et al. Carbon, 2015, 90, 255.
29 Roya M, Alireza K. Structural Chemistry, 2014, 25, 853.
30 Hang Y, Wu W Z, Yu J, et al. Chinese Physics B, 2016, 25(2), 023102.
31 Zhang Q, Song Q C, Wang X Y, et al. Energy & Environmental Science, 2018, 4, 933.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[3] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[4] 白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
[5] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[6] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[7] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[8] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[9] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[10] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[11] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[12] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[13] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[14] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[15] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed