Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23080046-9    https://doi.org/10.11896/cldb.23080046
  无机非金属及其复合材料 |
磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究
范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍*
山东大学土建与水利学院,济南 250061
Study on pH, Conductivity Response and Pore Characteristics of Low Liquid Limit Silt Reinforced by Magnesium Phosphate Cement
FAN Xuhan, WANG Bingnan, TANG Shihao, XIN Xing, PEI Yan*
School of Civil Engineering, Shandong University, Jinan 250061, China
下载:  全 文 ( PDF ) ( 21326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究磷酸镁水泥(Magnesium phosphate cement,MPC)对黄河淤积低液限粉土的加固问题,本试验研究不同MPC占干土的掺量、镁磷比(m(M/P))及硼酸与氧化镁比(m(BA/M))对粉土初始pH、电导率的响应;探究选定m(M/P)、m(BA/M)下不同龄期和不同MPC掺量固化土的无侧限抗压强度、pH、电导率与水化产物的变化规律,并基于CT扫描技术重构了三种不同MPC掺量下固化土的孔隙网络模型,结合XRD物相分析,揭示其固化机理。结果表明:随着MPC掺量的增加,m(M/P)较小时固化土的初始pH逐渐减小,而m(M/P)较大时pH先增大后减小。MPC掺量和m(M/P)一定时,随着m(BA/M)的增加,pH在m(BA/M)为某一值(2%)时降为最低,随后逐渐增大。考虑到低液限粉土的低用水量与促进后期水化需求,选择偏酸性配比(m(M/P)=1,m(BA/M)=2%)与低于15%MPC掺量较为合适。pH随着龄期和MPC掺量的增加而增加,电导率变化规律则与pH相反,二者呈负指数的关系,且能定性地表征水化情况。力学试验结果表明MPC能使粉土强度大幅提升,龄期与MPC掺量的增加均使固化土的强度增长。XRD与CT扫描结果表明,MPC固化机制为各龄期均出现的鸟粪石和MgO胶结在土粒之间形成交互结构,且随着MPC的掺量增加,土颗粒间的粘结更加紧密,形成的土骨架提升了宏观力学强度,同时扩大孔隙空间,增加了孔隙率,增强了孔隙间的连通性,导致渗透性增大,因此工程应用时可通过改善孔隙结构进一步提升固化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范旭涵
王炳楠
汤世豪
辛星
裴妍
关键词:  低液限粉土  磷酸镁水泥  pH和电导率  无侧限抗压强度  孔隙网络模型    
Abstract: To explore the reinforcement of magnesium phosphate cement (MPC) on low liquid limit silt deposited in the Yellow River, this experiment studied the response of different MPC contents to dry soil, magnesium-phosphorus ratio m(M/P) and boric acid-magnesium oxide ratio m(BA/M) to the initial pH and conductivity of silt. The unconfined compressive strength, pH, conductivity, and hydration products of solidified soil with different ages and MPC contents were selected under defined m(M/P) and m(BA/M). Based on CT scanning technology, the pore network models of solidified soil with three kinds of MPC content were reconstructed, and the solidification mechanism was revealed by XRD phase analysis. The results show that with the increase of MPC content, the initial pH of the solidified soil decreases gradually when m(M/P) is small, while the pH increases first and then decreases when m(M/P) is significant. When the MPC content and m(M/P) were constant, with the increase of m(BA/M), the pH decreased to the lowest at a certain value (2%) and then gradually increased. Considering the low water consumption of low liquid limit silt and the need to promote hydration in the later stage, the acidic ratio (m(M/P)=1, m(BA/M)=2%) and less than 15%MPC content is recommanded. The pH increases with age and MPC content, and the conductivity decreases with pH increasing, these two have a negative exponential relationship and can qualitatively characterize hydration. The mechanical test results show that MPC can significantly improve the strength of silt, and the strength of solidified silt will increase as age and MPC content increase. The results of XRD and CT scanning show that the MPC solidification mechanism is S-Struvite and MgO cementation appearing and the interactive structure forming both between soil particles at all ages. With MPC content increasing, the bonding between soil particles is closer, and the formed soil skeleton improves the macroscopic mechanical strength. At the same time, it also expands the pore space, increases the porosity, enhances the connectivity between the pores, and increases permeability. Therefore, the solidification performance can be further improved in engineering applications by improving the pore structure.
Key words:  low liquid limit silt    magnesium phosphate cement    pH value and electric conductivity    unconfined compression strength    pore network model
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TU521.3  
基金资助: 国家自然科学基金(52279105)
通讯作者:  *裴妍,山东大学土建与水利学院副教授、博士研究生导师。2017年获法国里尔中央理工大学土木工程博士学位,2018年进入山东大学土建与水利学院工作至今。目前主要从事多孔介质(岩土体、混凝土等)多场耦合多尺度渗流传输、低渗/超低渗材料渗透测试理论与方法、多孔介质微细观结构特征与多尺度力学行为、地下工程防灾减灾高性能复合材料制备与性能等方面的研究工作。发表论文20余篇,包括Cement and Concrete Research、Construction and Building Materials、Engineering Structures等。peiyan@sdu.edu.cn   
作者简介:  范旭涵,2021年9月于东北农业大学获得工学学士学位。现为山东大学土建与水利学院硕士研究生,在裴妍副研究员的指导下进行研究。目前主要研究领域为水工岩土工程。
引用本文:    
范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
FAN Xuhan, WANG Bingnan, TANG Shihao, XIN Xing, PEI Yan. Study on pH, Conductivity Response and Pore Characteristics of Low Liquid Limit Silt Reinforced by Magnesium Phosphate Cement. Materials Reports, 2024, 38(16): 23080046-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080046  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23080046
1 Soud’ee E, P’era J. Cement and Concrete Research, 2000, 30(2), 315.
2 Liu Y, Chen B, Hong S, et al. Powder Technology, 2022, 399, 117208.
3 Mestres G, Ginebra M P. Acta Biomaterials, 2011, 7(4), 1853.
4 Jiang Z W, Qian C, Chen Q. Construction and Building Materials, 2017, 157, 10.
5 Qiao F, Chua C K, Li Z J. Construction and Building Materials, 2010, 24(5), 695.
6 Li Y, Chen B. Construction and Building Materials, 2013, 47, 977.
7 Xin H, Zhen Y L, Tao Y, et al. Construction and Building Materials, 2019, 225, 234.
8 Le Rouzic M, Chaussadent T, Saillio M. Cement and Concrete Research, 2017, 96, 27.
9 Qin J H, Qian J S, Dai X B, et al. Journal of the American Ceramic Society, 2021, 104(6), 2799.
10 Walling S A, Provis J L. Chemical Reviews, 2016, 116(7), 4170.
11 Han C, Yang J M, Shan C M, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(1), 48 (in Chinese).
韩超, 杨建明, 单春明, 等. 硅酸盐通报, 2021, 40(1), 48.
12 Wang A S. Chemically bonded phosphate ceramics:twenty first century materials with diverse applications, 2nd Ed, Elsevier, UK, 2016, pp. 29.
13 Li W, Ni P, Yi Y. Science of the Total Environment, 2019, 671, 741.
14 Hou S W, Zhang H, Yang Z J, et al. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1), 3123 (in Chinese).
侯世伟, 张皓, 杨镇吉, 等. 岩石力学与工程学报, 2020, 39(S1), 3123.
15 Luo Y L, Mu W H, Zhou X T, et al. Environmental Chemistry, 2021, 40(12), 3875 (in Chinese).
雒云龙, 母维宏, 周新涛, 等. 环境化学, 2021, 40(12), 3875.
16 Li P, Chen B. Construction and Building Materials, 2021, 281, 122609.
17 Zhou Q Y, Xiong B L, Yang G Q, et al. Chinese Journal of Geotechnical Engineering, 2013, 35(S2), 439 (in Chinese).
周乔勇, 熊保林, 杨广庆, 等. 岩土工程学报, 2013, 35(S2), 439.
18 Zhu Z D. Study on stabilization of silt subgrade:theory and application. Ph. D. Thesis, Southeast University, China, 2006 (in Chinese).
朱志铎. 粉土路基稳定理论与工程应用技术研究. 博士学位论文, 东南大学, 2006.
19 Zhu Z D, Liu S Y, Sun H J. Rock and Soil Mechanics, 2004, 25(7), 1155 (in Chinese).
朱志铎, 刘松玉, 孙海军. 岩土力学, 2004, 25(7), 1155.
20 Cui W, Lv G H, Liu C Y. Science Technology and Engineering, 2018, 18(8), 302 (in Chinese).
崔伟, 吕高航, 刘春阳. 科学技术与工程, 2018, 18(8), 302.
21 Yao Z Y, Ai Y Z, Shang Q S, et al. Rock and Soil Mechanics, 2008, 29(7), 1943(in Chinese).
姚占勇, 艾贻中, 商庆森, 等. 岩土力学, 2008, 29(7), 1943.
22 Wei L, Chai S X. Journal of Engineering Geology, 2018, 26(2), 407 (in Chinese).
魏丽, 柴寿喜. 工程地质学报, 2018, 26(2), 407.
23 Wang J Y, Peng L Y. Journal of Beijing University of Civil Engineering and Architecture, 2015, 31(3), 33 (in Chinese).
王剑烨, 彭丽云. 北京建筑大学学报, 2015, 31(3), 33.
24 Peng L Y, Chen X, Qi J L, et al. Materials Reports, 2024, 38(13), 1 (in Chinese).
彭丽云, 陈星, 齐吉琳, 等. 材料导报, 2024, 38(13), 1.
25 Wang L, Shen S L, Bai Y, et al. Rock and Soil Mechanics, 2010, 31(3), 743 (in Chinese).
王领, 沈水龙, 白云, 等. 岩土力学, 2010, 31(3), 743.
26 Abdelrazig B E I, Sharp J H, El-Jazairi B. Cement and Concrete Research, 1988, 18(3), 415.
27 Wang H T. Study on the high performance magnesia-phosphate cement based composites. Ph. D. Thesis, Chongqing University, China, 2006 (in Chinese).
汪宏涛. 高性能磷酸镁水泥基材料研究. 博士学位论文, 重庆大学, 2006.
28 Qin J H, Qian J S, Song Q, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1592 (in Chinese).
秦继辉, 钱觉时, 宋庆, 等. 硅酸盐学报, 2022, 50(6), 1592.
29 You C. Hydration and hardening of magnesium phosphate cement and stability of hydration products. Ph. D. Thesis, Chongqing University, China, 2017 (in Chinese).
尤超. 磷酸镁水泥水化硬化及水化产物稳定性. 博士学位论文, 重庆大学, 2017.
30 Lahalle H, Coumes C C D, Mesbah A, et al. Cement and concrete research, 2016, 87, 77.
31 Liu J, Guo R H, Zhang Z X. Materials Reports, 2021, 35(23), 23068 (in Chinese).
刘进, 呙润华, 张增起. 材料导报, 2021, 35(23), 23068.
32 Wang Q Z, Qian J S, Qin J H, et al. Journal of the Chinese Ceramic Society, 2013, 41(11), 1493 (in Chinese).
王庆珍, 钱觉时, 秦继辉, 等. 硅酸盐学报, 2013, 41(11), 1493.
33 Yuan T L, Bing C. Construction and Building Materials, 2019, 214, 516.
34 Yang Z H, Liu S J, Wu K, et al. Materials Reports, 2023, 37(1), 118(in Chinese).
杨正宏, 刘思佳, 吴凯, 等, 材料导报, 2023, 37(1), 118.
35 Pandey A, Schwab P, Little D N. Transportation Geotechnics, 2022, 37, 100854.
36 Blunt M J, Jackson M D, Piri M, et al. Advances in Water Resources, 2002, 25, 1069.
37 Tansey J, Balhoff M T. Transport in Porous Media, 2016, 113(2), 303.
38 Fan N, Wang J, Deng C, et al. Journal of Natural Gas Science and Engineering, 2020, 81, 103384.
39 Li Y X, Wang Q, Zhang Q C, et al. Materials Reports, 2023, 37(S1), 156 (in Chinese).
李雅曦, 王琴, 张秋臣, 等. 材料导报, 2023, 37(S1), 156.
[1] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[2] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[3] 董金美, 文静, 郑卫新, 贾利蕊, 常成功, 肖学英. 盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响[J]. 材料导报, 2023, 37(23): 22040072-7.
[4] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[5] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[6] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[7] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[8] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[9] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[10] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[11] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[12] 傅明娇,杨海林,吴传明,张 影,尤 超,钱觉时. 温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 86-90.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed