Abstract: With the rapid development of nuclear technology, radioactive wastewater produced from the nuclear facility is increasingly concerned by the public. 60Co, the main activated corrosion product in the radioactive wastewater poses a potential threat to both organisms and human health after entering the water environment. Adsorption is one of the crucial methods for the removal of cobalt from radioactive wastewater, and the key lies in the development of adsorption materials. Currently, there remains substantial room for improvement in the performance, cost-effectiveness, stability and recyclability of adsorption materials. In this review, adsorption materials for the removal of cobalt from radioactive wastewater are taken as the main research object, and the adsorption isotherms and kinetics of cobalt are also explored. Inorganic, organic, and biological adsorption materials are evaluated and summarized. Finally, the development and engineering application of adsorption materials for the removal of cobalt from radioactive wastewater are discussed. Future research is suggested to concentrate on developing novel and efficient adsorption materials, creating supporting processes, and further clarifying the principles and mechanisms of cobalt adsorption. Additionally, this review points out that multiple models and approaches should be used to more accurately investigate the adsorption process, aiming to provide insights for the development and engineering application of cobalt removal adsorption materials and related technologies.
1 Smiikla S, Dimović S, Plećaš I, et al. Water Research, 2006, 40(12), 2267. 2 Zhou L L. Associations between cobalt nutritional status and gestational diabetes mellitus in pregnancy:a prospective cohort study. Master’s Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese). 周蕾蕾. 孕期钴营养状况与妊娠期糖尿病关联的前瞻性研究. 硕士学位论文, 华中科技大学, 2023. 3 Siva S, Sudharsan S, Kannan R S. RSC Advances, 2015, 5(30), 23340. 4 Moriyama N, Nakayama C, Orui M, et al. Preventive Medicine Reports, 2020, 20, 101214. 5 Peng Y Y, Lei Y, Li T L, et al. Guangzhou Chemical Industry, 2022, 50(23), 35 (in Chinese). 彭银银, 雷阳, 李廷玲, 等. 广州化工, 2022, 50(23), 35. 6 Weng G R, Du H. Industrial Water & Wastewater, 2014, 45(5), 5 (in Chinese). 文贵荣, 杜虎. 工业用水与废水, 2014, 45(5), 5. 7 Liu X, Naraginti S, Zhang F, et al. Journal of Environmental Chemical Engineering, 2025, 13(2), 115671. 8 Islam M A, Morton D W, Johnson B B, et al. Environmental Nanotech-nology, Monitoring & Management, 2018, 10, 435. 9 Corda N, Kini M S. Separation Science and Technology, 2020, 55(15), 2679. 10 Dusengemungu L, Kasali G, Gwanama C, et al. Frontiers in Microbiology, 2020, 11, 582016. 11 Hu Z T. Modern Chemical Research, 2023(7), 21 (in Chinese). 胡智涛. 当代化工研究, 2023(7), 21. 12 Jun B M, Lee H K, Park S, et al. Separation and Purification Technology, 2022, 278, 119675. 13 Zhang L P, Zhang H, Ge Z W, et al. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288(2), 537. 14 Mech K, Zabinski P, Kowalik R. Journal of the Electrochemical Society, 2013, 160(6), D246. 15 Song W C, Hu J, Zhao Y, et al. RSC Advances, 2013, 3(24), 9514. 16 Hayes K F, Leckie J O. Journal of Colloid and Interface Science, 1987, 115(2), 564. 17 Fitts J P, Persson P, Brown G E, et al. Journal of Colloid and Interface Science, 1999, 220(1), 133. 18 Ren X M, Yang S T, Tan X L, et al. Science China-Chemistry, 2012, 55(9), 1752. 19 Jeppu G, Girish C R, Prabhu B, et al. Environmental Processes-an International Journal, 2023, 10(2), 38. 20 Anirudhan T S, Deepa J R, Christa J. Journal of Colloid and Interface Science, 2016, 467, 307. 21 Zeng Y, Lan T, Li M, et al. Journal of Chemical and Engineering Data, 2021, 66(1), 749. 22 Benaissa H, Nasrallah N, Abdi A, et al. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3), 1497. 23 Liao W, Long X L, Wei Y P, et al. Journal of Polymers and the Environment, 2022, 30(9), 3779. 24 Liang C Q, Jia M C, Wang X W, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(2), 377. 25 Hamed M M, Ali M M S, Holiel M. Journal of Environmental Radioactivity, 2016, 164, 113. 26 Singh S, Kapoor D, Khasnabis S, et al. Environmental Chemistry Letters, 2021, 19(3), 2351. 27 Majd M M, Kordzadeh-Kermani V, Ghalandari V, et al. Science of the Total Environment, 2022, 812, 151334. 28 Savastru E, Bulgariu D, Zamfir C I, et al. Water, 2022, 14(6), 976. 29 Zhuang S T, Mei Y C, Wang J L. Journal of Cleaner Production, 2023, 430, 139709. 30 Zhao K, Chen J, Sun J K, et al. New Chemical Materials, 2022, 50(9), 70 (in Chinese). 赵坤, 陈进, 孙建科, 等. 化工新型材料, 2022, 50(9), 70. 31 Zhao G X, Li J X, Ren X M, et al. Environmental Science & Technology, 2011, 45(24), 10454. 32 Tao S X, Wang T Y, Wu Y H, et al. Journal of Hazardous Materials, 2021, 415, 125680. 33 Guo X J, Lu J, Zhang L. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4), 630. 34 Zhang Q, Zhuang S T, Wang J L. Journal of Environmental Chemical Engineering, 2020, 8(6), 104531. 35 Lujaniene G, Novikau R, Karaleviciute K, et al. Journal of Hazardous Materials, 2024, 462, 132747. 36 Zeng Y, Yuan G Y, Lan T, et al. Nuclear Engineering and Technology, 2022, 54(11), 4013. 37 Yuan G Y, Zhao C S, Tu H, et al. Inorganica Chimica Acta, 2018, 483, 488. 38 Yu L, Lan T, Yuan G Y, et al. Polymers, 2023, 15(9), 2150. 39 Ngwenya N, Chirwa E M N. Minerals Engineering, 2010, 23(6), 463. 40 Ibrahim W M. Journal of Hazardous Materials, 2011, 192(3), 1827. 41 Hao W F, Zhang J N, Yan W F. Chinese Science Bulletin-Chinese, 2024, 69(16), 2221. 42 Diez E, Redondo C, Gomez J M, et al. Water, 2023, 15(2), 270. 43 Nakhaei M, Mokhtari H R, Vatanpour V, et al. Water Air and Soil Pollution, 2023, 234(12), 746. 44 Fang X H, Fang F, Lu C H, et al. Nuclear Engineering and Technology, 2017, 49(3), 556. 45 Omar H, Arida H, Daifullah A. Applied Clay Science, 2009, 44(1-2), 21. 46 Yao Q X, Jia M C, Men J F. In:10th China International Nanoscience and Technology Symposium. Hangzhou, 2012, pp. 95. 47 Granados F, Bertin V, Bulbulian S, et al. Applied Radiation and Isotopes, 2006, 64(3), 291. 48 El-Shazly E A A, Dakroury G A, Someda H H. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330(1), 127. 49 Mahmoud M E, Saad E A, El-Khatib A M, et al. Progress in Nuclear Energy, 2018, 106, 51. 50 Hayati B, Maleki A, Najafi F, et al. Chemical Engineering Journal, 2018, 346, 258. 51 Zhuang S T, Wang J L. Environmental Science and Pollution Research, 2023, 30(45), 101433. 52 Mahmoud M E, Saad E A, Soliman M A, et al. RSC Advances, 2016, 6(70), 66242. 53 Huang G T, Shao L F, Hw X H, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(3), 847. 54 Zhang M D, Gu P, Yan S, et al. Separation and Purification Technology, 2021, 256, 117775. 55 Nishad P A, Ajaykumar A, Bhaskarapillai A. International Journal of Biological Macromolecules, 2023, 246, 125720. 56 Sharifi M J, Nouralishahi A, Hallajisani A. International Journal of Biological Macromolecules, 2023, 248, 125984. 57 Chen Y W, Wang J L. Nuclear Engineering and Design, 2012, 242, 452. 58 Rengaraj S, Moon S H. Water Research, 2002, 36(7), 1783. 59 Rengaraj S, Yeon K H, Kang S Y, et al. Journal of Hazardous Materials, 2002, 92(2), 185. 60 Christophi C A, Axe L. Journal of Environmental Engineering, 2000, 126(1), 66. 61 Zvezdov A, Ishigure K. Desalination, 2003, 154(2), 153. 62 Yuan G Y, Tian Y, Liu J, et al. Chemical Engineering Journal, 2017, 326, 691. 63 Yuan G Y, Tian Y, Li M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(2), 827. 64 Kang R F, Qiu L, Fang L L, et al. Journal of Environmental Chemical Engineering, 2016, 4(2), 2268. 65 Yuan G Y, Tu H, Liu J, et al. Chemical Engineering Journal, 2018, 333, 280. 66 Yang M C, Rollins D S, Huber D L, et al. Journal of Materials Chemistry C, 2023, 11(44), 15541. 67 Pak G T, Jo S, Kim T H, et al. Chemosphere, 2022, 302, 134910. 68 Sa Y. Separation and Purification Methods, 2001, 30(1), 1. 69 Kadadou D, Said E A, Ajaj R, et al. Journal of Water Process Engineering, 2023, 52, 103604. 70 Bourceret A, Cébron A, Tisserant E, et al. Microbial Ecology, 2016, 71(3), 711. 71 Davis T A, Volesky B, Mucci A. Water Research, 2003, 37(18), 4311. 72 Liu G, Li Q B. Technology of Water Treatment, 2002, 28(1), 17 (in Chinese). 刘刚, 李清彪. 水处理技术, 2002, 28(1), 17. 73 Tisakova L, Pipiska M, Godany A, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1), 737. 74 Gogada, Singh S S, Lunavat S K, et al. Applied Microbiology and Biotechnology, 2015, 99(21), 9203. 75 Rashmi K, Haritha A, Balaji V, et al. Current Science, 2007, 92(10), 1407. 76 Raghu G, Balaji V, Venkateswaran G, et al. Applied Microbiology and Biotechnology, 2008, 81(3), 571. 77 El-Bondkly A M A, El-Gendy M. Heliyon, 2022, 8(7), e09854. 78 Song W C, Liang J, Wen T, et al. Chemical Engineering Journal, 2016, 304, 186. 79 Shimura H, Itoh K, Sugiyama A, et al. Plos One, 2012, 7(9), e44200. 80 Adam C, Garnier-Laplace J. Limnology and Oceanography, 2003, 48(6), 2303. 81 Kim T Y, Hong J E, Park H M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(2), 903. 82 Horník M, Pipíska M, Kociová M, et al. Cereal Research Communications, 2008, 36, 419. 83 Ahmady-Asbchin S, Tabaraki R, Jafari N, et al. Environmental Technology, 2013, 34(16), 2423. 84 Foroutan R, Esmaeili H, Abbasi M, et al. Environmental Technology, 2018, 39(21), 2792. 85 Montazer-Rahmati M M, Rabbani P, Abdolali A, et al. Journal of Ha-zardous Materials, 2011, 185(1), 401. 86 Carreira A R F, Veloso T, Macario I P E, et al. Chemosphere, 2023, 314, 137675.