Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24070147-9    https://doi.org/10.11896/cldb.24070147
  无机非金属及其复合材料 |
放射性含钴废水吸附材料的研究进展
刘欣颖, 雷雨菡, 张光辉*, 顾平
天津大学环境科学与工程学院,天津 300354
Research Progress of Adsorption Materials for Radioactive Cobalt-containing Wastewater
LIU Xinying, LEI Yuhan, ZHANG Guanghui*, GU Ping
School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
下载:  全 文 ( PDF ) ( 20360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着核技术的快速发展,放射性废水受到关注,作为主要活化腐蚀产物的60Co,一旦进入水环境后易对生物和人体造成潜在威胁。吸附法是放射性废水除钴的重要手段之一,其关键在于吸附材料的开发,而目前吸附材料在性能、成本效益、稳定性和再生性等方面仍有较大提升空间。本文以处理放射性含钴废水的吸附材料为主要研究对象,探讨了钴的吸附等温线和吸附动力学,并对无机、有机和生物吸附材料进行了评估和总结,最后对放射性含钴废水吸附材料的开发和工程应用提出了展望。本文指出未来研究应致力于开发新型高效吸附材料、研发配套工艺、深入明晰吸附除钴的规律和机理,采用多种模型和方法更准确地考察吸附过程,以期为除钴吸附材料的开发及关联技术的工程化应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘欣颖
雷雨菡
张光辉
顾平
关键词:  废水  放射性  吸附材料    吸附机理    
Abstract: With the rapid development of nuclear technology, radioactive wastewater produced from the nuclear facility is increasingly concerned by the public. 60Co, the main activated corrosion product in the radioactive wastewater poses a potential threat to both organisms and human health after entering the water environment. Adsorption is one of the crucial methods for the removal of cobalt from radioactive wastewater, and the key lies in the development of adsorption materials. Currently, there remains substantial room for improvement in the performance, cost-effectiveness, stability and recyclability of adsorption materials. In this review, adsorption materials for the removal of cobalt from radioactive wastewater are taken as the main research object, and the adsorption isotherms and kinetics of cobalt are also explored. Inorganic, organic, and biological adsorption materials are evaluated and summarized. Finally, the development and engineering application of adsorption materials for the removal of cobalt from radioactive wastewater are discussed. Future research is suggested to concentrate on developing novel and efficient adsorption materials, creating supporting processes, and further clarifying the principles and mechanisms of cobalt adsorption. Additionally, this review points out that multiple models and approaches should be used to more accurately investigate the adsorption process, aiming to provide insights for the development and engineering application of cobalt removal adsorption materials and related technologies.
Key words:  waste water    radioactivity    adsorption material    cobalt    adsorption mechanism
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  X591  
  TL941+.1  
  X703.1  
基金资助: 天津大学自主创新基金(2024XZY-008);深圳市科技计划项目(CJGJZD20230724093959001)
通讯作者:  *张光辉,博士,天津大学环境科学与工程学院副教授、硕士研究生导师。目前主要从事膜法水处理、放射性废水处理等方面的研究工作。z_gh@163.com   
作者简介:  刘欣颖,天津大学环境科学与工程学院硕士研究生,在张光辉副教授的指导下进行研究,主要研究领域为放射性废水处理技术。
引用本文:    
刘欣颖, 雷雨菡, 张光辉, 顾平. 放射性含钴废水吸附材料的研究进展[J]. 材料导报, 2025, 39(12): 24070147-9.
LIU Xinying, LEI Yuhan, ZHANG Guanghui, GU Ping. Research Progress of Adsorption Materials for Radioactive Cobalt-containing Wastewater. Materials Reports, 2025, 39(12): 24070147-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070147  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24070147
1 Smiikla S, Dimović S, Plećaš I, et al. Water Research, 2006, 40(12), 2267.
2 Zhou L L. Associations between cobalt nutritional status and gestational diabetes mellitus in pregnancy:a prospective cohort study. Master’s Thesis, Huazhong University of Science and Technology, China, 2023 (in Chinese).
周蕾蕾. 孕期钴营养状况与妊娠期糖尿病关联的前瞻性研究. 硕士学位论文, 华中科技大学, 2023.
3 Siva S, Sudharsan S, Kannan R S. RSC Advances, 2015, 5(30), 23340.
4 Moriyama N, Nakayama C, Orui M, et al. Preventive Medicine Reports, 2020, 20, 101214.
5 Peng Y Y, Lei Y, Li T L, et al. Guangzhou Chemical Industry, 2022, 50(23), 35 (in Chinese).
彭银银, 雷阳, 李廷玲, 等. 广州化工, 2022, 50(23), 35.
6 Weng G R, Du H. Industrial Water & Wastewater, 2014, 45(5), 5 (in Chinese).
文贵荣, 杜虎. 工业用水与废水, 2014, 45(5), 5.
7 Liu X, Naraginti S, Zhang F, et al. Journal of Environmental Chemical Engineering, 2025, 13(2), 115671.
8 Islam M A, Morton D W, Johnson B B, et al. Environmental Nanotech-nology, Monitoring & Management, 2018, 10, 435.
9 Corda N, Kini M S. Separation Science and Technology, 2020, 55(15), 2679.
10 Dusengemungu L, Kasali G, Gwanama C, et al. Frontiers in Microbiology, 2020, 11, 582016.
11 Hu Z T. Modern Chemical Research, 2023(7), 21 (in Chinese).
胡智涛. 当代化工研究, 2023(7), 21.
12 Jun B M, Lee H K, Park S, et al. Separation and Purification Technology, 2022, 278, 119675.
13 Zhang L P, Zhang H, Ge Z W, et al. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288(2), 537.
14 Mech K, Zabinski P, Kowalik R. Journal of the Electrochemical Society, 2013, 160(6), D246.
15 Song W C, Hu J, Zhao Y, et al. RSC Advances, 2013, 3(24), 9514.
16 Hayes K F, Leckie J O. Journal of Colloid and Interface Science, 1987, 115(2), 564.
17 Fitts J P, Persson P, Brown G E, et al. Journal of Colloid and Interface Science, 1999, 220(1), 133.
18 Ren X M, Yang S T, Tan X L, et al. Science China-Chemistry, 2012, 55(9), 1752.
19 Jeppu G, Girish C R, Prabhu B, et al. Environmental Processes-an International Journal, 2023, 10(2), 38.
20 Anirudhan T S, Deepa J R, Christa J. Journal of Colloid and Interface Science, 2016, 467, 307.
21 Zeng Y, Lan T, Li M, et al. Journal of Chemical and Engineering Data, 2021, 66(1), 749.
22 Benaissa H, Nasrallah N, Abdi A, et al. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3), 1497.
23 Liao W, Long X L, Wei Y P, et al. Journal of Polymers and the Environment, 2022, 30(9), 3779.
24 Liang C Q, Jia M C, Wang X W, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(2), 377.
25 Hamed M M, Ali M M S, Holiel M. Journal of Environmental Radioactivity, 2016, 164, 113.
26 Singh S, Kapoor D, Khasnabis S, et al. Environmental Chemistry Letters, 2021, 19(3), 2351.
27 Majd M M, Kordzadeh-Kermani V, Ghalandari V, et al. Science of the Total Environment, 2022, 812, 151334.
28 Savastru E, Bulgariu D, Zamfir C I, et al. Water, 2022, 14(6), 976.
29 Zhuang S T, Mei Y C, Wang J L. Journal of Cleaner Production, 2023, 430, 139709.
30 Zhao K, Chen J, Sun J K, et al. New Chemical Materials, 2022, 50(9), 70 (in Chinese).
赵坤, 陈进, 孙建科, 等. 化工新型材料, 2022, 50(9), 70.
31 Zhao G X, Li J X, Ren X M, et al. Environmental Science & Technology, 2011, 45(24), 10454.
32 Tao S X, Wang T Y, Wu Y H, et al. Journal of Hazardous Materials, 2021, 415, 125680.
33 Guo X J, Lu J, Zhang L. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(4), 630.
34 Zhang Q, Zhuang S T, Wang J L. Journal of Environmental Chemical Engineering, 2020, 8(6), 104531.
35 Lujaniene G, Novikau R, Karaleviciute K, et al. Journal of Hazardous Materials, 2024, 462, 132747.
36 Zeng Y, Yuan G Y, Lan T, et al. Nuclear Engineering and Technology, 2022, 54(11), 4013.
37 Yuan G Y, Zhao C S, Tu H, et al. Inorganica Chimica Acta, 2018, 483, 488.
38 Yu L, Lan T, Yuan G Y, et al. Polymers, 2023, 15(9), 2150.
39 Ngwenya N, Chirwa E M N. Minerals Engineering, 2010, 23(6), 463.
40 Ibrahim W M. Journal of Hazardous Materials, 2011, 192(3), 1827.
41 Hao W F, Zhang J N, Yan W F. Chinese Science Bulletin-Chinese, 2024, 69(16), 2221.
42 Diez E, Redondo C, Gomez J M, et al. Water, 2023, 15(2), 270.
43 Nakhaei M, Mokhtari H R, Vatanpour V, et al. Water Air and Soil Pollution, 2023, 234(12), 746.
44 Fang X H, Fang F, Lu C H, et al. Nuclear Engineering and Technology, 2017, 49(3), 556.
45 Omar H, Arida H, Daifullah A. Applied Clay Science, 2009, 44(1-2), 21.
46 Yao Q X, Jia M C, Men J F. In:10th China International Nanoscience and Technology Symposium. Hangzhou, 2012, pp. 95.
47 Granados F, Bertin V, Bulbulian S, et al. Applied Radiation and Isotopes, 2006, 64(3), 291.
48 El-Shazly E A A, Dakroury G A, Someda H H. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330(1), 127.
49 Mahmoud M E, Saad E A, El-Khatib A M, et al. Progress in Nuclear Energy, 2018, 106, 51.
50 Hayati B, Maleki A, Najafi F, et al. Chemical Engineering Journal, 2018, 346, 258.
51 Zhuang S T, Wang J L. Environmental Science and Pollution Research, 2023, 30(45), 101433.
52 Mahmoud M E, Saad E A, Soliman M A, et al. RSC Advances, 2016, 6(70), 66242.
53 Huang G T, Shao L F, Hw X H, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 319(3), 847.
54 Zhang M D, Gu P, Yan S, et al. Separation and Purification Technology, 2021, 256, 117775.
55 Nishad P A, Ajaykumar A, Bhaskarapillai A. International Journal of Biological Macromolecules, 2023, 246, 125720.
56 Sharifi M J, Nouralishahi A, Hallajisani A. International Journal of Biological Macromolecules, 2023, 248, 125984.
57 Chen Y W, Wang J L. Nuclear Engineering and Design, 2012, 242, 452.
58 Rengaraj S, Moon S H. Water Research, 2002, 36(7), 1783.
59 Rengaraj S, Yeon K H, Kang S Y, et al. Journal of Hazardous Materials, 2002, 92(2), 185.
60 Christophi C A, Axe L. Journal of Environmental Engineering, 2000, 126(1), 66.
61 Zvezdov A, Ishigure K. Desalination, 2003, 154(2), 153.
62 Yuan G Y, Tian Y, Liu J, et al. Chemical Engineering Journal, 2017, 326, 691.
63 Yuan G Y, Tian Y, Li M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322(2), 827.
64 Kang R F, Qiu L, Fang L L, et al. Journal of Environmental Chemical Engineering, 2016, 4(2), 2268.
65 Yuan G Y, Tu H, Liu J, et al. Chemical Engineering Journal, 2018, 333, 280.
66 Yang M C, Rollins D S, Huber D L, et al. Journal of Materials Chemistry C, 2023, 11(44), 15541.
67 Pak G T, Jo S, Kim T H, et al. Chemosphere, 2022, 302, 134910.
68 Sa Y. Separation and Purification Methods, 2001, 30(1), 1.
69 Kadadou D, Said E A, Ajaj R, et al. Journal of Water Process Engineering, 2023, 52, 103604.
70 Bourceret A, Cébron A, Tisserant E, et al. Microbial Ecology, 2016, 71(3), 711.
71 Davis T A, Volesky B, Mucci A. Water Research, 2003, 37(18), 4311.
72 Liu G, Li Q B. Technology of Water Treatment, 2002, 28(1), 17 (in Chinese).
刘刚, 李清彪. 水处理技术, 2002, 28(1), 17.
73 Tisakova L, Pipiska M, Godany A, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295(1), 737.
74 Gogada, Singh S S, Lunavat S K, et al. Applied Microbiology and Biotechnology, 2015, 99(21), 9203.
75 Rashmi K, Haritha A, Balaji V, et al. Current Science, 2007, 92(10), 1407.
76 Raghu G, Balaji V, Venkateswaran G, et al. Applied Microbiology and Biotechnology, 2008, 81(3), 571.
77 El-Bondkly A M A, El-Gendy M. Heliyon, 2022, 8(7), e09854.
78 Song W C, Liang J, Wen T, et al. Chemical Engineering Journal, 2016, 304, 186.
79 Shimura H, Itoh K, Sugiyama A, et al. Plos One, 2012, 7(9), e44200.
80 Adam C, Garnier-Laplace J. Limnology and Oceanography, 2003, 48(6), 2303.
81 Kim T Y, Hong J E, Park H M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(2), 903.
82 Horník M, Pipíska M, Kociová M, et al. Cereal Research Communications, 2008, 36, 419.
83 Ahmady-Asbchin S, Tabaraki R, Jafari N, et al. Environmental Technology, 2013, 34(16), 2423.
84 Foroutan R, Esmaeili H, Abbasi M, et al. Environmental Technology, 2018, 39(21), 2792.
85 Montazer-Rahmati M M, Rabbani P, Abdolali A, et al. Journal of Ha-zardous Materials, 2011, 185(1), 401.
86 Carreira A R F, Veloso T, Macario I P E, et al. Chemosphere, 2023, 314, 137675.
[1] 韩帅文, 朱可晟, 刘长洋, 刘子良, 卞刘振, 杨礼林. 固体氧化物电池金属连接体锰钴涂层材料研究进展[J]. 材料导报, 2025, 39(8): 23100253-6.
[2] 岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌. 水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例[J]. 材料导报, 2025, 39(8): 24040159-7.
[3] 杨晓敏, 王刚, 王雪, 桑芳娟, 杨凯. 高分子絮凝剂PDTAM去除水中Cr(Ⅵ)的抗环境干扰性研究[J]. 材料导报, 2025, 39(7): 23100140-8.
[4] 张力飞, 路新春, 张佳磊, 赵德文. 钴化学机械抛光中抛光液及清洗剂的研究进展[J]. 材料导报, 2025, 39(6): 24090050-10.
[5] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[6] 薛世翔, 吴攀, 赵亮, 雷琬莹. NiO@CoFe LDH/NF纳米片阵列用于高效析氧反应[J]. 材料导报, 2025, 39(11): 24040131-7.
[7] 董舵, 管婧宇, 王子祺, 肖逸. 核电厂放射性废物安全处置技术研究[J]. 材料导报, 2025, 39(11): 24110091-17.
[8] 马茜, 强荣, 邵玉龙, 杨啸, 薛瑞, 任方杰, 吴旭. MOFs衍生钴/碳复合材料的制备及吸波性能研究[J]. 材料导报, 2025, 39(11): 24020121-9.
[9] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[10] 刘志伟, 武婵, 遆鑫森, 刘有智. SDBS插层与吸附协同增强片状镍钴氢氧化物的电化学性能[J]. 材料导报, 2025, 39(10): 23070007-8.
[11] 尚文旭, 俞文涛, 何义, 马彦义, 谈鹏. 锌电池中钴基正极材料的应用现状与挑战[J]. 材料导报, 2024, 38(6): 23040024-10.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[14] 刘悦卿, 赵江涛, 王凤青, 刘雷, 丁勇, 孙颖莉, 闫阿儒. 铝镍钴永磁材料的研究进展[J]. 材料导报, 2024, 38(23): 23080088-10.
[15] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed