Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24110091-17    https://doi.org/10.11896/cldb.24110091
  无机非金属及其复合材料 |
核电厂放射性废物安全处置技术研究
董舵1,*, 管婧宇1, 王子祺1, 肖逸2
1 中国核电工程有限公司,北京 100840
2 华北电力大学能源动力与机械工程学院,北京 102206
Technological Advances in Safe Disposal of Radioactive Waste from Nuclear Plants
DONG Duo1,*, GUAN Jingyu1, WANG Ziqi1, XIAO Yi2
1 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
下载:  全 文 ( PDF ) ( 30932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核能是解决能源危机的重要途径,但核能利用产生的放射性废物安全处置至关重要。对于放射性废物,选取特定固化基质禁锢后进行深地质处置是实现其永久屏蔽的有效途径。本文重点介绍了放射性废物处置的最新研发进展,系统阐述了不同放射性废物固化处置技术(水泥固化、沥青固化、聚合物固化、人造岩石固化、玻璃固化)及其熔制工艺(一步罐式工艺、煅烧+感应加热金属熔炉、焦耳加热陶瓷熔炉、冷坩埚),深入探讨了玻璃固化放射性废物技术的设计原则、禁锢机理及应用现状,分析了典型硼硅酸盐/磷酸盐玻璃类基质用于包络放射性核素的特点,指出了未来放射性废物经固化处置的发展路线,以期为推动核工业放射性废物的安全高效处置提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董舵
管婧宇
王子祺
肖逸
关键词:  核能  放射性废物  固化技术  熔融炉  硼硅酸盐玻璃  磷酸盐玻璃    
Abstract: Nuclear energy is an effective way to solve the energy shortage, but the safe disposal of radioactive waste generated by nuclear energy utilization is of crucial importance. The immobilization of radioactive waste on specific substrates and deep geological disposal is an effective way to achieve permanent isolation of radioactive waste. This paper focuses on the latest developments in the disposal of radioactive waste, comprehensively elaborating on various immobilization disposal technologies for radioactive waste (cement-matrix immobilization, asphalt-matrix immobilization, crosslinking polymer-matrix immobilization, artificial rock-matrix immobilization, glass melting-matrix immobilization), as well as melting preparation processes (one-step tank method, calcination + induction heating metal furnace, Joule heating ceramic furnace, cold crucible). In addition, the design principles, confinement mechanism, and application status of typical glass immobilization technology are discussed, and the characteristics of typical borosilicate glass and phosphate glass used for immobilization of radioactive waste are analyzed. Finally the paper points out the future development path of radioactive waste immobilization disposal, hoping to provide useful information for promoting the safe and efficient disposal of radioactive waste in nuclear industry.
Key words:  nuclear energy    radioactive waste    immobilization technology    melting furnace    borosilicate glass    phosphate glass
发布日期:  2025-05-29
ZTFLH:  TL94  
通讯作者:  *董舵,博士,中国核工业集团·中国核电工程有限公司高级工程师,核星计划入选者。主要从事核能综合利用、放射性废物安全处置、功能碳材料储能、污染物控制、核安全等方面的研究。dongduoyx@163.com   
引用本文:    
董舵, 管婧宇, 王子祺, 肖逸. 核电厂放射性废物安全处置技术研究[J]. 材料导报, 2025, 39(11): 24110091-17.
DONG Duo, GUAN Jingyu, WANG Ziqi, XIAO Yi. Technological Advances in Safe Disposal of Radioactive Waste from Nuclear Plants. Materials Reports, 2025, 39(11): 24110091-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110091  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24110091
1 Weng T W, Zhang Y L, Zhang G X, et al. Energy, 2024, 302, 131765.
2 Liu L M, Guo H, Dai L H, et al. Progress in Nuclear Energy, 2023, 162, 104772.
3 Pyo J Y, Um W, Heo J. Nuclear Engineering and Technology, 2021, 53, 2261.
4 Chapman N, Hooper A. Proceedings of the Geologists Association, 2012, 123, 46.
5 Komljenović M, Tanasijević G, Džunuzović N, et al. Journal of Hazardous Materials, 2020, 388, 121765.
6 Kim J, Singh B K, Um W. RSC Advances, 2021, 11, 2729.
7 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 429, 113595.
8 Ojovan M I, Yudintsev S V. Open Ceramics, 2023, 14, 100355.
9 Li J F, Wang J L. Journal of Hazardous Materials, 2006, B135, 443.
10 Huang Z Y, Guo W Y, Shi Y, et al. Ceramics International, 2023, 49, 28651.
11 Crum J, Maio V, McCloy J, et al. Journal of Nuclear Materials, 2014, 444, 481.
12 Sakai A, Ishida S. Annals of Nuclear Energy, 2024, 196, 110175.
13 Kurniawan T A, Othman M H D, Singh D, et al. Annals of Nuclear Energy, 2022, 166, 108736.
14 Xu K. Materials China, 2016, 35(7), 481 (in Chinese).
徐凯. 中国材料进展, 2016, 35(7), 481.
15 Ojoban M I, Lee W E. Nature Materials, 2011, 42, 837.
16 HAD 401/12-2020核设施放射性废物处置前管理, 2020.
17 Xu D W, Xu H M, Zhou C H, et al. Radiation Protection, 2019, 39(3), 213 (in Chinese).
余达万, 徐宏明, 周辰昊, 等. 辐射防护, 2019, 39(3), 213.
18 Thorpe C L, Neeway J J, Pearce C I, et al. npj Materials Degradation, 2021, 61, 1.
19 Sanito R C, Bernuy-Zumaeta M, You S J, et al. Journal of Environmental Management, 2022, 316, 115243.
20 Li J F, Chen L, Wang J L. Progress in Nuclear Energy, 2021, 141, 103957.
21 Arod J. Nuclear and Chemical Waste Management, 1982, 3, 179.
22 Wang C, Yu G C, Wang J L. Nuclear Engineering and Design, 2024, 422, 113138.
23 Jantzen C M, Marra J C. MRS Proceedings, 2008, 1107, 183.
24 Ringwood A E, Oversby V M, Kesson S E, et al. Nuclear and Chemical Waste Management, 1981, 2, 287.
25 Tian Q W, Li N, Xu Z H, et al. Journal of the Ceramic Society of Japan, 2019, 127, 44.
26 Che C X, Teng Y C, Gui Q. Materials Reports, 2006, 20(2), 94 (in Chinese).
车春霞, 滕元成, 桂强. 材料导报, 2006, 20(2), 94.
27 Yan C S, Liang Y F, Zhan S Q. Radiation Protection, 2016, 36(4), 232 (in Chinese).
严沧生, 梁永丰, 战仕全. 辐射防护, 2016, 36(4), 232.
28 Liu W L, Jia Z J, Ran M D, et al. Sichuan Environment, 2023, 42(4), 351 (in Chinese).
刘文磊, 贾占举, 冉洺东, 等. 四川环境, 2023, 42(4), 351.
29 Wang F X, Zhuo Z L, Feng S T, et al. Nuclear Protection, 1978(3), 52 (in Chinese).
王凤祥, 卓宗亮, 冯声涛, 等. 核防护, 1978(3), 52.
30 Luo S G. Chemical World, 1985(11), 29 (in Chinese).
罗上庚. 化学世界, 1985(11), 29.
31 Hatch L P. American Scientist, 1953, 41, 410.
32 Ruan J J, Sui Y, Zhang H, et al. Nuclear Science and Engineering, 2023, 43(1), 225 (in Chinese).
阮家剑, 隋阳, 张辉, 等. 核科学与工程, 2023, 43(1), 225.
33 Ringwood A E, Kesson S E, Ware N G, et al. Nature, 1979, 278, 219.
34 Duan T, Ding Y, Luo S L, et al. Journal of Inorganic Materials, 2021, 36(1), 25 (in Chinese).
段涛, 丁艺, 罗世淋, 等. 无机材料学报, 2021, 36(1), 25.
35 王再宏, 邓司浩, 罗彦滔. 环境科学导刊, 2018, 37(S), 1.
36 Liu J R, Xu Y D, Zhang W S, et al. Progress in Nuclear Energy, 2024, 169, 105106.
37 Luo S G, Yang J W, Teng Y C. Acta Chimica Sinica, 2000, 58(12), 1608 (in Chinese).
罗上庚, 杨建文, 滕元成. 化学学报, 2000, 58(12), 1608.
38 Sengupta P. Journal of Hazardous Materials, 2012, 235-236, 17.
39 Zhu H Z, Wang F, Liao Q L, et al. Journal of Nuclear Materials, 2020, 532, 152026.
40 Li Y K, Zhao G. Chemical Engineer, 2023, 37(12), 81 (in Chinese).
李元奎, 赵刚. 化学工程师, 2023, 37(12), 81.
41 Roth G, Weisenburger S. Nuclear Engineering and Design, 2000, 202, 197.
42 Song Y, Chen M Z, Liu X J, et al. Industrial Furnace, 2012, 34(2), 16 (in Chinese).
宋云, 陈明周, 刘夏杰, 等. 工业炉, 2012, 34(2), 16.
43 Fan S J, Qian M, Xue T F, et al. Journal of the Chinese Ceramic Society, 2021, 49(12), 2736 (in Chinese).
凡思军, 钱敏, 薛天锋, 等. 硅酸盐学报, 2021, 49(12), 2736.
44 Ma Y H, Chu H R, Zheng B W. Annals of Nuclear Energy, 2024, 198, 110307.
45 Lee S, Hrma P, Pokorny R, et al. Journal of Nuclear Materials, 2017, 496, 54.
46 Hrma P, Kruger A A, Pokorny R. Journal of Non-Crystalline Solids, 2012, 358, 3559.
47 Hujová M, Klouzek J, Cutforth D A, et al. Ceramics International, 2019, 45, 6405.
48 Gin S, Abdelouas A, Criscenti L J, et al. Materials Today, 2013, 16, 243.
49 Song Y Q, Gao Z, Ji T J, et al. Radiation Protection, 2014, 34(5), 333 (in Chinese).
宋玉乾, 高振, 吉头杰, 等. 辐射防护, 2014, 34(5), 333.
50 Zhu D D, Liu L J, Qie D S, et al. Atomic Energy Science and Technology, 2018, 52(12), 2222 (in Chinese).
朱冬冬, 刘丽君, 郄东生, 等. 原子能科学技术, 2018, 52(12), 2222.
51 Yang L L, Li X H, Xu W. Radiation Protection Bulletin, 2013, 33(3), 37 (in Chinese).
杨丽莉, 李晓海, 徐卫. 辐射防护通讯, 2013, 33(3), 37.
52 Stefanovsky S V, Lebedev V V, Ptashkin A G, et al. Advances in Science and Technology, 2010, 73, 183.
53 Stefanovsky S V, Mysgkin Y V, Adamovich D V, et al. Advances in Science and Technology, 2014, 94, 121.
54 Vernaza É, Bruezière J. Procedia Materials Science, 2014, 7, 3.
55 Goel A, McCloy J S, Pokorny R, et al. Journal of Non-Crystalline Solids X, 2019, 4, 100033.
56 Sun Y P, Xia X B, Qiao Y B, et al. Science China-Materials, 2016, 59, 279.
57 Day D E, Wu Z, Ray C S, et al. Journal of Non-Crystalline Solids, 1998, 24, 1.
58 Mesko M G, Day D E, Bunker B C. Waste Management, 2000, 20, 271.
59 Huang W H, Day D E, Ray C S, et al. Journal of Nuclear Materials, 2005, 346, 298.
60 Poirier G, Ottoboni F S. Journal of Physical Chemistry B, 2008, 112, 4481.
61 Bingham P A, Hand R J. Materials Research Bulletin, 2008, 43, 1679.
62 Xu K, Hrma P, Um W, et al. Journal of Nuclear Materials, 2013, 441, 262.
63 Qian M, Fan S J, Xue T F, et al. Journal of the Chinese Ceramic Society, 2021, 49(10), 2251 (in Chinese).
钱敏, 凡思军, 薛天锋, 等. 硅酸盐学报, 2021, 49(10), 2251.
64 Chen X L, Chen H, Lei H, et al. Journal of Nuclear and Radiochemistry, 2021, 43(1), 64 (in Chinese).
陈晓丽, 陈晗, 雷浩, 等. 核化学与放射化学, 2021, 43(1), 64.
65 Wang X F, Wang L J, Zhang S D. Journal of Nuclear and Radiochemistry, 2019, 41(6), 509 (in Chinese).
王长福, 刘丽君, 张生栋. 核化学与放射化学, 2019, 41(6), 509.
66 Calas G, Le Grand M, Galoisy L, et al. Journal of Nuclear Materials, 2003, 322, 15.
67 Chouard N, Caurant D, Majérus O, et al. Journal of Non-Crystalline Solids, 2011, 357, 2752.
68 Lenoir M, Neuville D R, Malki M, et al. Journal of Non-Crystalline So-lids, 2010, 356, 2722.
69 Wang X Q, Tuo X G, Zhou H, et al. Journal of Nuclear and Radioche-mistry, 2013, 35(3), 180 (in Chinese).
王孝强, 庹先国, 周慧, 等. 核化学与放射化学, 2013, 35(3), 180.
70 Jahagirdar P B, Wattal P K. Waste Management, 1998, 18, 265.
71 Lei J, Wang B, Xu L G, et al. Journal of Nuclear Materials, 2021, 555, 153121.
72 Xie H, Li J B, Wang L L, et al. Nuclear Science and Engineering, 2018, 38(2), 289 (in Chinese).
谢华, 李江博, 王烈林, 等. 核科学与工程, 2018, 38(2), 289.
73 Deschanels X, Peuget S, Cachia J N, et al. Progress in Nuclear Energy, 2007, 49, 623.
74 Zhang H, Hyatt N C, Stevens J R, et al. Atomic Energy Science and Technology, 2015, 49(7), 1159 (in Chinese).
张华, Hyatt N C, Stevens J R, 等. 原子能科学技术, 2015, 49(7), 1159.
75 Cachia J N, Deschanels X, Den Auwer C, et al. Journal of Nuclear Materials, 2006, 352, 182.
76 Stefanovsky S V, Shiryaev A A, Vlasova I E, et al. MRS Online Procee-dings Library Archive, 2012, 1444.
77 Sales B C, Boatner L A. Science, 1984, 226, 45.
78 Kim C W, Ray C S, Zhu D, et al. Journal of Nuclear Materials, 2003, 322, 152.
79 Joseph K, Govindan Kutty K V, Chandramohan P, et al. Journal of Nuclear Materials, 2009, 384, 262.
80 Reis S T, Pontuschka W M, Mogus-Milankovic A, et al. Journal of the American Ceramic Society, 2017, 100, 1976.
81 Karabulut M, Yuce B, Bozdogan O, et al. Journal of Non-Crystalline Solids, 2011, 357, 1455.
82 Huang W H, Day D E, Ray C S, et al. Journal of Nuclear Materials, 2004, 327, 46.
83 Stefanovsky S V, Stefanovsky O I, Myasoedov B F, et al. Journal of Non-Crystalline Solids, 2017, 471, 421.
84 Karabulut M, Marasinghe G K, Ray C S, et al. Journal of Non-Crystalline Solids, 1999, 249, 106.
85 Marasinghe G K, Karabulut M, Ray C S, et al. Journal of Non-Crystalline Solids, 2000, 263-264, 146.
86 Donald I W, Metcalfe B L, Fong S K, et al. Journal of Nuclear Materials, 2007, 361, 78.
87 Liu X Y, Qiao Y B, Qian Z H, et al. Journal of Nuclear Materials, 2018, 508, 286.
88 Li X Y, Xiao Z H, He Y T, et al. Journal of Non-Crystalline Solids, 2019, 523, 119528.
89 Bai J C, Hsu J, Sandineni P, et al. Journal of Non-Crystalline Solids, 2019, 510, 121.
90 Joseph K, Ghosh S, Govindan K K V, et al. Journal of Nuclear Materials, 2012, 426, 233.
91 Lai Y M, Liang X F, Yang S Y, et al. Journal of Alloys and Compounds, 2014, 617, 597.
92 Liu J F, Zhu Y Y, Wang F, et al. Journal of Non-Crystalline Solids, 2018, 500, 92.
93 Rincón J M, Ramos C, Arboleda P, et al. Materials Letters, 2018, 227, 82.
94 Stefanovsky S V, Stefanovsky O I, Danilov S S, et al. Ceramics International, 2019, 45, 9331.
95 Moguss-Milankovic A, Santic A, Gajovic A, et al. Journal of Non-Crystalline Solids, 2003, 325, 76.
96 Li X Y, Xiao Z H, Luo M H, et al. Journal of Non-Crystalline Solids, 2017, 469, 62.
97 Joseph K, Asuvathraman R, Venkata K R, et al. Journal of Nuclear Materials, 2014, 452, 273.
98 Hsu J H, Bai J C, Kim C W, et al. Journal of Nuclear Materials, 2018, 500, 373.
99 Kitamura N, Noumra A, Saitoh A, et al. Journal of the Ceramic Society of Japan, 2018, 126, 948.
100 Santica A, Mogus-Milankovic A, Furic K, et al. Journal of Non-Crystalline Solids, 2007, 353, 1070.
101 Shih P Y. Materials Chemistry and Physics, 2003, 80, 299.
102 Reis S T, Karabulut M, Day D E. Journal of Nuclear Materials, 2002, 304, 87.
103 Yudintsev S V, Shiryaev A A. Technical Physics, 2018, 63, 513.
104 Neeway J, Abdelouas A, Grambow B, et al. Journal of Nuclear Materials, 2011, 415, 31.
105 Ferrand K, Abdelouas A, Grambow B. Journal of Nuclear Materials, 2006, 355, 54.
106 Ojovan M I, Pankov A, Lee W E. Journal of Nuclear Materials, 2006, 358, 57.
107 Gin S, Guittonneau C, Godon N, et al. Journal of Physical Chemistry C, 2011, 115, 18696.
108 Poinssot C, Gin S. Journal of Nuclear Materials, 2012, 420, 182.
109 Hellmann R, Cotte S, Cadel E, et al. Nature Materials, 2015, 14, 307.
[1] 岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌. 水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例[J]. 材料导报, 2025, 39(8): 24040159-7.
[2] 童钦, 霍冀川, 张行泉, 霍泳霖, 徐冲, 蒋勤, 宋巍伟. 模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究[J]. 材料导报, 2023, 37(24): 21110089-5.
[3] 霍泳霖, 霍冀川, 张行泉, 秦桂璐. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 20080281-11.
[4] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[5] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[6] 张礼华,张云升,殷倩文. Li2O/K2O物质的量比对P2O5-Al2O3-BaO-Li2O-K2O磷酸盐玻璃热光性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 1955-1958.
[7] 王振林, 成来飞. 玻璃的辐照效应及耐辐照改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 94-99.
[8] 王兰, 侯晨曦, 樊龙, 谢忆, 卢喜瑞. 矿物固化含Sr、Cs放射性废物研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 106-111.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed