Technological Advances in Safe Disposal of Radioactive Waste from Nuclear Plants
DONG Duo1,*, GUAN Jingyu1, WANG Ziqi1, XIAO Yi2
1 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China 2 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract: Nuclear energy is an effective way to solve the energy shortage, but the safe disposal of radioactive waste generated by nuclear energy utilization is of crucial importance. The immobilization of radioactive waste on specific substrates and deep geological disposal is an effective way to achieve permanent isolation of radioactive waste. This paper focuses on the latest developments in the disposal of radioactive waste, comprehensively elaborating on various immobilization disposal technologies for radioactive waste (cement-matrix immobilization, asphalt-matrix immobilization, crosslinking polymer-matrix immobilization, artificial rock-matrix immobilization, glass melting-matrix immobilization), as well as melting preparation processes (one-step tank method, calcination + induction heating metal furnace, Joule heating ceramic furnace, cold crucible). In addition, the design principles, confinement mechanism, and application status of typical glass immobilization technology are discussed, and the characteristics of typical borosilicate glass and phosphate glass used for immobilization of radioactive waste are analyzed. Finally the paper points out the future development path of radioactive waste immobilization disposal, hoping to provide useful information for promoting the safe and efficient disposal of radioactive waste in nuclear industry.
1 Weng T W, Zhang Y L, Zhang G X, et al. Energy, 2024, 302, 131765. 2 Liu L M, Guo H, Dai L H, et al. Progress in Nuclear Energy, 2023, 162, 104772. 3 Pyo J Y, Um W, Heo J. Nuclear Engineering and Technology, 2021, 53, 2261. 4 Chapman N, Hooper A. Proceedings of the Geologists Association, 2012, 123, 46. 5 Komljenović M, Tanasijević G, Džunuzović N, et al. Journal of Hazardous Materials, 2020, 388, 121765. 6 Kim J, Singh B K, Um W. RSC Advances, 2021, 11, 2729. 7 Chen L, Li J F, Wang J L. Nuclear Engineering and Design, 2024, 429, 113595. 8 Ojovan M I, Yudintsev S V. Open Ceramics, 2023, 14, 100355. 9 Li J F, Wang J L. Journal of Hazardous Materials, 2006, B135, 443. 10 Huang Z Y, Guo W Y, Shi Y, et al. Ceramics International, 2023, 49, 28651. 11 Crum J, Maio V, McCloy J, et al. Journal of Nuclear Materials, 2014, 444, 481. 12 Sakai A, Ishida S. Annals of Nuclear Energy, 2024, 196, 110175. 13 Kurniawan T A, Othman M H D, Singh D, et al. Annals of Nuclear Energy, 2022, 166, 108736. 14 Xu K. Materials China, 2016, 35(7), 481 (in Chinese). 徐凯. 中国材料进展, 2016, 35(7), 481. 15 Ojoban M I, Lee W E. Nature Materials, 2011, 42, 837. 16 HAD 401/12-2020核设施放射性废物处置前管理, 2020. 17 Xu D W, Xu H M, Zhou C H, et al. Radiation Protection, 2019, 39(3), 213 (in Chinese). 余达万, 徐宏明, 周辰昊, 等. 辐射防护, 2019, 39(3), 213. 18 Thorpe C L, Neeway J J, Pearce C I, et al. npj Materials Degradation, 2021, 61, 1. 19 Sanito R C, Bernuy-Zumaeta M, You S J, et al. Journal of Environmental Management, 2022, 316, 115243. 20 Li J F, Chen L, Wang J L. Progress in Nuclear Energy, 2021, 141, 103957. 21 Arod J. Nuclear and Chemical Waste Management, 1982, 3, 179. 22 Wang C, Yu G C, Wang J L. Nuclear Engineering and Design, 2024, 422, 113138. 23 Jantzen C M, Marra J C. MRS Proceedings, 2008, 1107, 183. 24 Ringwood A E, Oversby V M, Kesson S E, et al. Nuclear and Chemical Waste Management, 1981, 2, 287. 25 Tian Q W, Li N, Xu Z H, et al. Journal of the Ceramic Society of Japan, 2019, 127, 44. 26 Che C X, Teng Y C, Gui Q. Materials Reports, 2006, 20(2), 94 (in Chinese). 车春霞, 滕元成, 桂强. 材料导报, 2006, 20(2), 94. 27 Yan C S, Liang Y F, Zhan S Q. Radiation Protection, 2016, 36(4), 232 (in Chinese). 严沧生, 梁永丰, 战仕全. 辐射防护, 2016, 36(4), 232. 28 Liu W L, Jia Z J, Ran M D, et al. Sichuan Environment, 2023, 42(4), 351 (in Chinese). 刘文磊, 贾占举, 冉洺东, 等. 四川环境, 2023, 42(4), 351. 29 Wang F X, Zhuo Z L, Feng S T, et al. Nuclear Protection, 1978(3), 52 (in Chinese). 王凤祥, 卓宗亮, 冯声涛, 等. 核防护, 1978(3), 52. 30 Luo S G. Chemical World, 1985(11), 29 (in Chinese). 罗上庚. 化学世界, 1985(11), 29. 31 Hatch L P. American Scientist, 1953, 41, 410. 32 Ruan J J, Sui Y, Zhang H, et al. Nuclear Science and Engineering, 2023, 43(1), 225 (in Chinese). 阮家剑, 隋阳, 张辉, 等. 核科学与工程, 2023, 43(1), 225. 33 Ringwood A E, Kesson S E, Ware N G, et al. Nature, 1979, 278, 219. 34 Duan T, Ding Y, Luo S L, et al. Journal of Inorganic Materials, 2021, 36(1), 25 (in Chinese). 段涛, 丁艺, 罗世淋, 等. 无机材料学报, 2021, 36(1), 25. 35 王再宏, 邓司浩, 罗彦滔. 环境科学导刊, 2018, 37(S), 1. 36 Liu J R, Xu Y D, Zhang W S, et al. Progress in Nuclear Energy, 2024, 169, 105106. 37 Luo S G, Yang J W, Teng Y C. Acta Chimica Sinica, 2000, 58(12), 1608 (in Chinese). 罗上庚, 杨建文, 滕元成. 化学学报, 2000, 58(12), 1608. 38 Sengupta P. Journal of Hazardous Materials, 2012, 235-236, 17. 39 Zhu H Z, Wang F, Liao Q L, et al. Journal of Nuclear Materials, 2020, 532, 152026. 40 Li Y K, Zhao G. Chemical Engineer, 2023, 37(12), 81 (in Chinese). 李元奎, 赵刚. 化学工程师, 2023, 37(12), 81. 41 Roth G, Weisenburger S. Nuclear Engineering and Design, 2000, 202, 197. 42 Song Y, Chen M Z, Liu X J, et al. Industrial Furnace, 2012, 34(2), 16 (in Chinese). 宋云, 陈明周, 刘夏杰, 等. 工业炉, 2012, 34(2), 16. 43 Fan S J, Qian M, Xue T F, et al. Journal of the Chinese Ceramic Society, 2021, 49(12), 2736 (in Chinese). 凡思军, 钱敏, 薛天锋, 等. 硅酸盐学报, 2021, 49(12), 2736. 44 Ma Y H, Chu H R, Zheng B W. Annals of Nuclear Energy, 2024, 198, 110307. 45 Lee S, Hrma P, Pokorny R, et al. Journal of Nuclear Materials, 2017, 496, 54. 46 Hrma P, Kruger A A, Pokorny R. Journal of Non-Crystalline Solids, 2012, 358, 3559. 47 Hujová M, Klouzek J, Cutforth D A, et al. Ceramics International, 2019, 45, 6405. 48 Gin S, Abdelouas A, Criscenti L J, et al. Materials Today, 2013, 16, 243. 49 Song Y Q, Gao Z, Ji T J, et al. Radiation Protection, 2014, 34(5), 333 (in Chinese). 宋玉乾, 高振, 吉头杰, 等. 辐射防护, 2014, 34(5), 333. 50 Zhu D D, Liu L J, Qie D S, et al. Atomic Energy Science and Technology, 2018, 52(12), 2222 (in Chinese). 朱冬冬, 刘丽君, 郄东生, 等. 原子能科学技术, 2018, 52(12), 2222. 51 Yang L L, Li X H, Xu W. Radiation Protection Bulletin, 2013, 33(3), 37 (in Chinese). 杨丽莉, 李晓海, 徐卫. 辐射防护通讯, 2013, 33(3), 37. 52 Stefanovsky S V, Lebedev V V, Ptashkin A G, et al. Advances in Science and Technology, 2010, 73, 183. 53 Stefanovsky S V, Mysgkin Y V, Adamovich D V, et al. Advances in Science and Technology, 2014, 94, 121. 54 Vernaza É, Bruezière J. Procedia Materials Science, 2014, 7, 3. 55 Goel A, McCloy J S, Pokorny R, et al. Journal of Non-Crystalline Solids X, 2019, 4, 100033. 56 Sun Y P, Xia X B, Qiao Y B, et al. Science China-Materials, 2016, 59, 279. 57 Day D E, Wu Z, Ray C S, et al. Journal of Non-Crystalline Solids, 1998, 24, 1. 58 Mesko M G, Day D E, Bunker B C. Waste Management, 2000, 20, 271. 59 Huang W H, Day D E, Ray C S, et al. Journal of Nuclear Materials, 2005, 346, 298. 60 Poirier G, Ottoboni F S. Journal of Physical Chemistry B, 2008, 112, 4481. 61 Bingham P A, Hand R J. Materials Research Bulletin, 2008, 43, 1679. 62 Xu K, Hrma P, Um W, et al. Journal of Nuclear Materials, 2013, 441, 262. 63 Qian M, Fan S J, Xue T F, et al. Journal of the Chinese Ceramic Society, 2021, 49(10), 2251 (in Chinese). 钱敏, 凡思军, 薛天锋, 等. 硅酸盐学报, 2021, 49(10), 2251. 64 Chen X L, Chen H, Lei H, et al. Journal of Nuclear and Radiochemistry, 2021, 43(1), 64 (in Chinese). 陈晓丽, 陈晗, 雷浩, 等. 核化学与放射化学, 2021, 43(1), 64. 65 Wang X F, Wang L J, Zhang S D. Journal of Nuclear and Radiochemistry, 2019, 41(6), 509 (in Chinese). 王长福, 刘丽君, 张生栋. 核化学与放射化学, 2019, 41(6), 509. 66 Calas G, Le Grand M, Galoisy L, et al. Journal of Nuclear Materials, 2003, 322, 15. 67 Chouard N, Caurant D, Majérus O, et al. Journal of Non-Crystalline Solids, 2011, 357, 2752. 68 Lenoir M, Neuville D R, Malki M, et al. Journal of Non-Crystalline So-lids, 2010, 356, 2722. 69 Wang X Q, Tuo X G, Zhou H, et al. Journal of Nuclear and Radioche-mistry, 2013, 35(3), 180 (in Chinese). 王孝强, 庹先国, 周慧, 等. 核化学与放射化学, 2013, 35(3), 180. 70 Jahagirdar P B, Wattal P K. Waste Management, 1998, 18, 265. 71 Lei J, Wang B, Xu L G, et al. Journal of Nuclear Materials, 2021, 555, 153121. 72 Xie H, Li J B, Wang L L, et al. Nuclear Science and Engineering, 2018, 38(2), 289 (in Chinese). 谢华, 李江博, 王烈林, 等. 核科学与工程, 2018, 38(2), 289. 73 Deschanels X, Peuget S, Cachia J N, et al. Progress in Nuclear Energy, 2007, 49, 623. 74 Zhang H, Hyatt N C, Stevens J R, et al. Atomic Energy Science and Technology, 2015, 49(7), 1159 (in Chinese). 张华, Hyatt N C, Stevens J R, 等. 原子能科学技术, 2015, 49(7), 1159. 75 Cachia J N, Deschanels X, Den Auwer C, et al. Journal of Nuclear Materials, 2006, 352, 182. 76 Stefanovsky S V, Shiryaev A A, Vlasova I E, et al. MRS Online Procee-dings Library Archive, 2012, 1444. 77 Sales B C, Boatner L A. Science, 1984, 226, 45. 78 Kim C W, Ray C S, Zhu D, et al. Journal of Nuclear Materials, 2003, 322, 152. 79 Joseph K, Govindan Kutty K V, Chandramohan P, et al. Journal of Nuclear Materials, 2009, 384, 262. 80 Reis S T, Pontuschka W M, Mogus-Milankovic A, et al. Journal of the American Ceramic Society, 2017, 100, 1976. 81 Karabulut M, Yuce B, Bozdogan O, et al. Journal of Non-Crystalline Solids, 2011, 357, 1455. 82 Huang W H, Day D E, Ray C S, et al. Journal of Nuclear Materials, 2004, 327, 46. 83 Stefanovsky S V, Stefanovsky O I, Myasoedov B F, et al. Journal of Non-Crystalline Solids, 2017, 471, 421. 84 Karabulut M, Marasinghe G K, Ray C S, et al. Journal of Non-Crystalline Solids, 1999, 249, 106. 85 Marasinghe G K, Karabulut M, Ray C S, et al. Journal of Non-Crystalline Solids, 2000, 263-264, 146. 86 Donald I W, Metcalfe B L, Fong S K, et al. Journal of Nuclear Materials, 2007, 361, 78. 87 Liu X Y, Qiao Y B, Qian Z H, et al. Journal of Nuclear Materials, 2018, 508, 286. 88 Li X Y, Xiao Z H, He Y T, et al. Journal of Non-Crystalline Solids, 2019, 523, 119528. 89 Bai J C, Hsu J, Sandineni P, et al. Journal of Non-Crystalline Solids, 2019, 510, 121. 90 Joseph K, Ghosh S, Govindan K K V, et al. Journal of Nuclear Materials, 2012, 426, 233. 91 Lai Y M, Liang X F, Yang S Y, et al. Journal of Alloys and Compounds, 2014, 617, 597. 92 Liu J F, Zhu Y Y, Wang F, et al. Journal of Non-Crystalline Solids, 2018, 500, 92. 93 Rincón J M, Ramos C, Arboleda P, et al. Materials Letters, 2018, 227, 82. 94 Stefanovsky S V, Stefanovsky O I, Danilov S S, et al. Ceramics International, 2019, 45, 9331. 95 Moguss-Milankovic A, Santic A, Gajovic A, et al. Journal of Non-Crystalline Solids, 2003, 325, 76. 96 Li X Y, Xiao Z H, Luo M H, et al. Journal of Non-Crystalline Solids, 2017, 469, 62. 97 Joseph K, Asuvathraman R, Venkata K R, et al. Journal of Nuclear Materials, 2014, 452, 273. 98 Hsu J H, Bai J C, Kim C W, et al. Journal of Nuclear Materials, 2018, 500, 373. 99 Kitamura N, Noumra A, Saitoh A, et al. Journal of the Ceramic Society of Japan, 2018, 126, 948. 100 Santica A, Mogus-Milankovic A, Furic K, et al. Journal of Non-Crystalline Solids, 2007, 353, 1070. 101 Shih P Y. Materials Chemistry and Physics, 2003, 80, 299. 102 Reis S T, Karabulut M, Day D E. Journal of Nuclear Materials, 2002, 304, 87. 103 Yudintsev S V, Shiryaev A A. Technical Physics, 2018, 63, 513. 104 Neeway J, Abdelouas A, Grambow B, et al. Journal of Nuclear Materials, 2011, 415, 31. 105 Ferrand K, Abdelouas A, Grambow B. Journal of Nuclear Materials, 2006, 355, 54. 106 Ojovan M I, Pankov A, Lee W E. Journal of Nuclear Materials, 2006, 358, 57. 107 Gin S, Guittonneau C, Godon N, et al. Journal of Physical Chemistry C, 2011, 115, 18696. 108 Poinssot C, Gin S. Journal of Nuclear Materials, 2012, 420, 182. 109 Hellmann R, Cotte S, Cadel E, et al. Nature Materials, 2015, 14, 307.