Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 510-514    https://doi.org/10.11896/j.issn.1005-023X.2018.03.023
     材料综述 |
自蔓延高温合成技术在高放废物处理领域的应用进展
何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞
西南科技大学核废物与环境安全国防重点学科实验室,绵阳 621010
Application of SHS Technique for the High-level Radioactive Waste Disposal
Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU
Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security,Southwest University of Science and Technology, Mianyang 621010
下载:  全 文 ( PDF ) ( 1222KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

高放废物难以安全高效处理一直是制约核工业发展的关键因素之一。目前,自蔓延高温合成技术(SHS)作为一种高效、简单、低耗能的高放废物固化体合成手段,成为当下高放废物处理研究的热点领域之一。简述了SHS技术的原理及特点,着重介绍了近年来SHS技术在高放废物固化领域的应用,探讨了现阶段SHS技术的研究进展和发展方向,并对其未来发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何宁宁
侯晨曦
舒小艳
马登生
卢喜瑞
关键词:  自蔓延高温合成  高放射性废物  固化    
Abstract: 

The safe and efficient treatment of high-level radioactive waste (HLW) has been one of the key factors which restrict the development of nuclear industry. As an efficient, simple and low energy consumption method of matrix synthesis, SHS technology has became the current hot spots in the field of HLW disposal. In this paper, the principle and characteristics of SHS technology are briefly introduced, while the application of SHS technology on the field of HLW curing in recent years and the research progress of SHS technology are especially elaborated. Meanwhile, the developing trends in the future are proposed.

Key words:  self propagating high temperature synthesis    high-level radioactive waste    solidification
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TL941  
基金资助: 国家自然科学基金(21507105);四川省教育厅重点项目(15ZB0116);核废物与环境安全国防重点学科实验室开放基金(15yyhk10);西南科技大学博士研究基金(10zx7126);四川省大学生创新创业训练计划资助项目(201710619061)
作者简介:  何宁宁:男,1996年生,硕士研究生,研究方向为高放废物人造岩石固化 E-mail: heningningmvp@163.com|卢喜瑞:通信作者,男,1983年生,博士,副研究员,研究方向为核废物处理与环境恢复 E-mail: luxiruimvp116@163.com
引用本文:    
何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal. Materials Reports, 2018, 32(3): 510-514.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.023  或          https://www.mater-rep.com/CN/Y2018/V32/I3/510
图1  自蔓延高温反应过程示意图
Reaction
temperature
K
Propagation velocity
of combustion
wave/(cm·s-1)
Heating
rate
K·s-1
Duration of
ignition
s
1 000—6 500 0.1—15 103—106 0.05—4.0
表1  SHS特征参数[25]
图2  SHS技术制备放射性废物人造岩石固化体的工艺流程图[28]
图3  SHS工艺玻璃化处理系统示意图
1 Ewing R C, Weber W J, Clinard F W . Radiation effects in nuclear waste forms for high-level radioactive waste[J]. Progress in Nuclear Energy, 1995,29(2):63.
2 Luo Shanggeng . Securities for disposal of super-radioactive waste[J]. Science & Technology Review, 1992,10(12):22(in Chinese).
2 罗上庚 . 高放废物处置安全研究[J]. 科技导报, 1992,10(12):22.
3 Luo Shanggeng . On the decommissioning strategies[J].Nuclear Safty,2011(1):13(in Chinese).
3 罗上庚 . 论退役策略[J].核安全,2011(1):13.
4 Ahearne J F . Radioactive waste[J]. Physics Today, 1997,50(50):22.
5 Donald I W, Metcalfe B L , Taylor R N J. The immobilization of high level radioactive wastes using ceramics and glasses[J]. Journal of Materials Science, 1997,32(22):5851.
6 Guloyan Y A . Solidification of glass in molding (a review)[J]. Glass and Ceramics, 2004,61(11-12):357.
7 Lutze W, Ewing R C . Radioactive waste forms for the future[M]. New York:Elsevier Science Pub.Co.Inc., 1988.
8 Ojovan M I, Lee W E . An introduction to nuclear waste immobilisation[M]. Elsevier, 2014.
9 Weber W J, Ewing R C, Angell C A , et al. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition[J]. Journal of Materials Research, 1997,12(8):1948.
10 Wang S, Alekseev E V, Ling J , et al. Polarity and chirality in uranyl borates: Insights into understanding the vitrification of nuclear waste and the development of nonlinear optical materials[J]. Che-mistry of Materials, 2010,22(6):2155.
11 Vienna J D . Nuclear waste vitrification in the United States: Recent developments and future options[J]. International Journal of Applied Glass Science, 2010,1(3):309.
12 Ringwood A E, Kesson S E, Ware N G , et al. The SYNROC process: A geochemical approach to nuclear waste immobilization[J]. Geochemical Journal, 1979,13(4):141.
13 Ringwood A E, Kesson S E, Ware N G , et al. Immobilization of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979,278(5701):219.
14 Wang L, Liang T . Ceramics for high level radioactive waste solidification[J]. Journal of Advanced Ceramics, 2012,1(3):194.
15 Brinkman K S, Marra J C, Amoroso J , et al. Crystalline ceramic waste forms: Comparison of reference process for ceramic waste form fabrication[R]. Office of Scientific & Technical Information Technical Reports, 2013.
16 Su X, Fu F, Yan Y , et al. Self-propagating high-temperature synjournal for compound thermoelectrics and new criterion for combustion processing[J]. Nature Communications, 2014,5:4908.
17 Zhang Ruizhu . Self-propagating high-temperature synjournal for the immobilization of high-level radioactive waste[J]. Journal of Chinese Ceramic Society, 2008,36(10):1484(in Chinese).
17 张瑞珠 . 自蔓延高温合成法固化高放射性核废料[J]. 硅酸盐学报, 2008,36(10):1484.
18 Muthuraman M, Dhas N A, Patil K C . Combustion synjournal of oxide materials for nuclear waste immobilization[J]. Bulletin of Materials Science, 1994,17(6):977.
19 Aruna S T, Muthuraman M, Patil K C . Synjournal and properties of Ni-YSZ cermet: Anode material for solid oxide fuel cells[J]. Solid State Ionics, 1998,111(1):45.
20 郭志猛, 高峰, 杨珂 , 等. 自蔓延高温合成法固化高放核废料的研究[ C]∥2006全国核材料学术交流会论文集.北京, 2006: 72.
21 Barinova T V, Borovinskaya I P, Ratnikov V I , et al. SHS immobilization of radioactive wastes[J]. Key Engineering Materials, 2002,217:193.
22 Zhang Ruizhu . Self-propagating high-temperature synthesis for ra-dioactive waste immobilization[D]. Beijing:University of Science and Technology Beijing, 2005(in Chinese).
22 张瑞珠 . 利用自蔓延高温合成技术固化放射性废物[D]. 北京:北京科技大学, 2005.
23 Yudintsev S V, Ioudintseva T S, Mokhov A V, et al. Study of pyrochlore and garnet-based matrices for actinide wastes produced by a self-propagating high-temperature synconfproc [C]∥MRS Procee-dings, 2003: 807.
24 Vinokurov S E, Yu M Kulyako, Perevalov S A , et al. Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synjournal[J]. Comptes Rendus Chimie, 2007,10(10):1128.
25 陈梦君, 卢喜瑞, 王蓉 . 放射性核废物的高温自蔓延处理研究进展[ C]∥全国环境化学大会暨环境科学仪器与分析仪器展览会.上海, 2011.
26 Gong Hengfeng, Ma Junping, Li Gongping , et al. Present research on synroc forms[J]. Journal of Gansu Science, 2009,21(4):150(in Chinese).
26 龚恒风, 马俊平, 李公平 , 等. 人造岩石固化体的研究现状[J]. 甘肃科学学报, 2009,21(4):150.
27 Wang Shenghong . The latest developments in self-propagating high temperature synjournal(SHS) technique[J]. Powder Metallurgy Industry, 2001,11(2):26(in Chinese).
27 王声宏 . 自蔓延高温合成(SHS)技术的最新进展[J]. 粉末冶金工业, 2001,11(2):26.
28 Fan Long . Fabrication and stability of Gd2Zr2O7 pyrochlore waste forms for multi-nuclides incorporation[D]. Mianyang: Southwest University of Science and Technology, 2016(in Chinese).
28 樊龙 . 钆锆烧绿石晶格固化多核素的机理及稳定性研究[D]. 绵阳:西南科技大学, 2016.
29 Glagovsky E M, Kouprine A V, Pelevine L P , et al. Study of matrices synjournaled by a self-propagating high-temperature synjournal[J]. Czechoslovak Journal of Physics, 2003,53(1):A657.
30 Glagovskii E M, Yudintsev S V, Kuprin A V , et al. Crystalline host phases for actinides, obtained by self-propagating high-temperature synjournal[J]. Radiochemistry, 2001,43(6):632.
31 Barinova T V, Borovinskaya I P, Ratnikov V I , et al. Self-propagating high-temperature synjournal for immobilization of high-level waste in mi-neral-like ceramics: 2. Immobilization of cesium in ceramics based on perovskite and zirconolite[J]. Radiochemistry, 2008,50(3):321.
32 Zhang Ruizhu, Guo Zhimeng . Solidification of radiation waste with Sr 2+ perovskite synrock SHS method [J]. The Chinese Journal of Nonferrous Metals, 2004,14(s2):110(in Chinese).
32 张瑞珠, 郭志猛 .含锶核素( Sr 2+)高放射性废物的SHS固化 [J]. 中国有色金属学报, 2004,14(s2):110.
33 Zhang Ruizhu, Tong Yuping, Yang Li , et al. Synjournal of perovskite by double-SHS for immobilization of 90Sr [J]. Journal of Nuclear and Radiochemistry, 2009,31(4):237(in Chinese).
33 张瑞珠, 仝玉萍, 杨丽 , 等. 二次自蔓延高温合成钙钛矿固化~ 90Sr [J]. 核化学与放射化学, 2009,31(4):237.
34 Zhang Ruizhu, Zhao Junhua, Guo Zhimeng . Synjournal of SrTiO3 by double-SHS for immobilization of high level radioactive waste[J]. Chinese Journal of Rare Metals, 2009,33(1):66(in Chinese).
34 张瑞珠, 赵军华, 郭志猛 . 二次自蔓延高温合成SrTiO3固化高放废物[J]. 稀有金属, 2009,33(1):66.
35 Wen G, Zhang K, Zhang H , et al. Immobilization and aqueous durability of Nd2O3, and CeO2, incorporation into rutile TiO2[J]. Ceramics International, 2015,41(5):6869.
36 Zhang K, Wen G, Zhang H , et al. Self-propagating high-temperature synjournal of Y2Ti2O7 pyrochlore and its aqueous durability[J]. Journal of Nuclear Materials, 2015,465:1.
37 Zhang K, Wen G, Zhang H , et al. Self-propagating high-temperature synjournal of CeO2 incorporated zirconolite-rich waste forms and the aqueous durability[J]. Journal of the European Ceramic Society, 2015,35(11):3085.
38 Wen Guanjun . Self-propagating high-temperature synthesis of zirconolite-rich synroc waste forms for the immobilization of simulated actinide[D]. Mianyang:Southwest University of Science and Technology, 2016(in Chinese).
38 文冠军 . 自蔓延高温合成富钙钛锆石型人造岩石及其对模拟锕系核素固化性能研究[D]. 绵阳:西南科技大学, 2016.
39 Sengupta P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix-present status and future challenges[J].Journal of Hazardous Materials, 2012, 235-236:17.
40 Liu Weiping, Gao Zhen, Fan Chengrong , et al. Investigation report on French vitrification technology[J]. Radiation Protection, 2014,34(6):404(in Chinese).
40 柳伟平, 高振, 范承蓉 , 等. 法国高放废液玻璃固化技术最新进展[J]. 辐射防护, 2014,34(6):404.
41 Buelt J L, Timmerman C L, Oma K H , et al. In situ vitrification of transuranic wastes: An updated systems evaluation and applications assessment[R].Pacific Northwest Lab.Richland, WA(USA), 1987: 1.
42 Mao Xianhe, Qin Zhigui, Wu Bin . Composition and structure analysis of simulated radioactive waste from immobilized with thermit by self-propagating high temperature synjournal[J]. Journal of the Chinese Ceramic Society, 2010,38(2):310(in Chinese).
42 毛仙鹤, 秦志桂, 武斌 . 铝热剂SHS合成模拟核废物固化产物的组成结构分析[J]. 硅酸盐学报, 2010,38(2):310.
43 Mao Xianhe, Yuan Xiaoning, Qin Zhigui , et al. Physicochemical properties of simulated radioactive waste formed with cerium[J].Journal of the Chinese Ceramic Society,2012(1):131(in Chinese).
43 毛仙鹤, 袁晓宁, 秦志桂 , 等. 铈模拟放射性废物固化体的物理化学性质[J].硅酸盐学报,2012(1):131.
44 Ojovan M I, Lee W E . Self sustaining vitrification for immobilisation of radioactive and toxic waste[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2003,44(44):218.
45 Mao X, Qin Z, Yuan X , et al. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synjournal[J]. Journal of Nuclear Materials, 2013,443(1-3):428.
46 Zhang Songlin, Zhang Qingming, Qin Zhigui , et al. Simulating experiments of solidification of sandy soil contaminated with actinides by SHS method of thermite[J]. Bulletin of the Chinese Ceramic So-ciety, 2010,29(1):253(in Chinese).
46 张松林, 张庆明, 秦志桂 , 等. 锕系核素污染沙土的铝热剂SHS固化模拟实验[J]. 硅酸盐通报, 2010,29(1):253.
47 Laverov N P , Omel’Yanenko B I, Yudintsev S V, et al. Glasses for immobilization of low-and intermediate-level radioactive waste[J]. Geology of Ore Deposits, 2013,55(2):71.
48 Liu Lijun, Li Jinying, Qie Dongsheng . Dependence of sulfate solubi-lity on waste glass composition during the vitrification of high level wastes[J]. Journal of Nuclear and Radiochemistry, 2009,31(2):290(in Chinese).
48 刘丽君, 李金英, 郄东生 . 高放废物玻璃固化过程中玻璃组成对硫酸盐溶解度的影响[J]. 核化学与放射化学, 2009,31(2):290.
49 International Atomic Energy Agency ( IAEA). Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reaction[M]. Austria,Vienna:IAEA, 2006.
50 Zheng Bowen, Li Xiaohai, Zhou Lianquan , et al. Research progress in treatment and disposal of radioactive graphite waste[J].Radiation Protection Bulletin,2012(3):32(in Chinese).
50 郑博文, 李晓海, 周连泉 , 等. 放射性废石墨的处理处置现状[J].辐射防护通讯,2012(3):32.
51 Zheng Bowen, Li Xiaohai, Wang Peiyi . Progress in the incineration treatment research of waste radioactive graphite[J]. Radiation Protection Bulletin, 2011,31(1):36(in Chinese).
51 郑博文, 李晓海, 王培义 . 放射性废石墨的焚烧处理[J]. 辐射防护通讯, 2011,31(1):36.
52 陈梦君, 卢喜瑞, 崔春龙 , 等. 核退役放射性石墨处理处置研究进展[ C]∥废物地下处置学术研讨会.杭州, 2010.
53 Deng Junxian, Wu Zhongyao, Xie Xiaolong , et al. Treatment and disposal of waste graphite from nuclear facility decommissioning[J].Nuclear Safety,2008(3):49(in Chinese).
53 邓浚献, 吴仲尧, 谢小龙 , 等. 核设施退役废石墨的处理与处置[J].核安全,2008(3):49.
54 Yarmolenko O A . Development of technology for high-level radwaste treatment to ceramic matrix by method of self-propagating high-temperature synjournal[J]. International Journal of Nuclear Energy Science & Technology, 2006,2(1):144.
55 Su Sijin, Ding Yi, Zhao Yanhong , et al. Leaching resistance of simulated radioactive graphitewaste forms prepared by SHS[J].Journal of Wuhan University of Technology,2014(6):10(in Chinese).
55 苏思瑾, 丁艺, 赵彦红 , 等. SHS制备模拟放射性石墨固化体抗浸出性能研究[J].武汉理工大学学报,2014(6):10.
56 Su Sijin, Lu Xirui, Chen Mengjun , et al. Preliminary study on treatment of simulated radioactive graphite containing actinides by SHS method[J].Radiation Protection,2013(2):91(in Chinese).
56 苏思瑾, 卢喜瑞, 陈梦君 , 等. 用自蔓延高温合成技术( SHS)处理模拟含锕系元素的放射性石墨的初步研究[J].辐射防护,2013(2):91.
57 Lu X, Dong F, Chen M , et al. Self-propagating high-temperature synjournal of simulated An 3+-contained radioactive graphite in N2 atmosphere [J]. Energy Procedia, 2014,39:365.
58 Lu Xirui, Chen Mengjun, Su Sijin , et al. SHS technology for immobilizing radioactive graphite containing 90Sr [J]. Journal of Wuhan University of Technology, 2012,34(8):16(in Chinese).
58 卢喜瑞, 陈梦君, 苏思瑾 , 等. SHS法处理 90Sr放射性石墨研究 [J]. 武汉理工大学学报, 2012,34(8):16.
59 苏思瑾, 董发勤, 卢喜瑞 , 等. 模拟含An 4+放射性石墨在N2气氛中的SHS处理研究 [ C]∥全国矿物科学与工程学术研讨会.秦皇岛, 2012: 163.
[1] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[4] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[5] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[6] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[7] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[8] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[9] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[10] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[11] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[12] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[13] 郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
[14] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[15] 周永祥, 霍孟浩, 侯莉, 陈枝东, 张领帅. 低强度流态填筑材料的研究现状及展望[J]. 材料导报, 2024, 38(15): 23040087-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed