Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23050199-7    https://doi.org/10.11896/cldb.23050199
  高分子与聚合物基复合材料 |
加成型液体硅橡胶的研究及应用进展
刘佳杰, 后振中*, 杨庆浩*, 赵秋丽
西安科技大学材料科学与工程学院,西安 710054
Research Progress of Additive Liquid Silicone Rubber
LIU Jiajie, HOU Zhenzhong*, YANG Qinghao*, ZHAO Qiuli
School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
下载:  全 文 ( PDF ) ( 3064KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 加成型液体硅橡胶(ALSR)是硅氢加成反应在硅橡胶固化交联领域中的一个重要应用。因为是加成交联,ALSR在固化过程中不产生副产物,收缩率极小,能深层固化且对接触的材料无腐蚀,所以加工成型时无气泡、砂眼,尺寸稳定,具有优良的耐热冲击性能,在诸多领域有着重要应用价值。本文首先简述了ALSR的基本组成与固化机理,然后以性能为切入点综述了近年来ALSR在机械、导热、粘结和阻燃等性能方面的研究进展,以及在电子电气、医疗、3D打印、光学和汽车领域的应用,最后提出高性能、多功能、复合化和先进加工是未来ALSR的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘佳杰
后振中
杨庆浩
赵秋丽
关键词:  加成型液体硅橡胶  固化机理  性能  应用    
Abstract: Addition liquid silicone rubber (ALSR) is an important application of hydrosilylation addition reaction in the field of silicone rubber curing and crosslinking. As it is crosslinked by addition, ALSR does not produce by-products during the curing process, has very small shrinkage, can be deeply solidified, and has no corrosion to the materials in contact. Therefore, there are no bubbles and sand holes during processing and molding, with stable size, excellent heat shock resistance, and has important application value in many fields. This article first outlines the basic composition and curing mechanism of ALSR, and then reviews the research progress in mechanical, thermal, adhesive, and flame retardant properties of ALSR in recent years, as well as its applications in the fields of electronic and electrical, medical, 3D printing, optical, and automotive. Finally, it proposes that high-performance, multifunctional, composite, and advanced processing are the future development directions of ALSR.
Key words:  addition type liquid silicone rubber    curing mechanism    properties    application
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TQ333.93  
基金资助: 陕西省重点研发计划(2023-YBGY-448);榆林市科技计划项目(CXY-2022-160)
通讯作者:  * 后振中,西安科技大学材料科学与工程学院讲师。2010年在同济大学获得材料学工学博士学位。主要研究方向为导电聚合物基新能源材料和功能性软材料。在国内外学术期刊上发表论文30余篇,其中被SCI、EI、ISTP收录20余篇,ESI高被引热点论文1篇;获得发明专利授权3项。hzzhong1981@163.com
杨庆浩,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2001—2002在日本大阪大学应用化学专业进行特别研究,2008年在西安交通大学取得材料科学与工程专业博士学位。目前主要研究方向为功能高分子材料。发表期刊论文30余篇,其中被SCI、EI、ISTP收录10余篇;获批发明专利3项、实用新型专利2项、软件著作权1项,参与编写著作2部。yangxjtu@hotmail.com   
作者简介:  刘佳杰,2021年7月于西安科技大学获得工学学士学位。现为西安科技大学材料科学与工程学院硕士研究生,在杨庆浩副教授和后振中讲师的指导下进行研究。目前主要从事功能材料研究。
引用本文:    
刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
LIU Jiajie, HOU Zhenzhong, YANG Qinghao, ZHAO Qiuli. Research Progress of Additive Liquid Silicone Rubber. Materials Reports, 2024, 38(20): 23050199-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050199  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23050199
1 Zhu G Y. Synthesis and properties of new additive liquid silicone rubber. Master’s Thesis, Zhongkai University of Agricultural Engineering, China, 2017 (in Chinese).
朱贵有. 新型加成型液体硅橡胶的合成及其性能研究. 硕士学位论文, 仲恺农业工程学院, 2017.
2 Fink J K. Liquid silicone rubber: chemistry, materials, and processing, John Wiley & Sons, USA, 2019, pp.1.
3 Yang L N, Gao J F, Zhou G Q. Organosilicon Materials, 2011, 25(6), 410 (in Chinese).
杨丽娜, 高建峰, 周光强. 有机硅材料, 2011, 25(6), 410.
4 Wang W X, Huang B Y, Tan L C, et al. Chinese Journal of Applied Chemistry, 2018, 35(9), 1005 (in Chinese).
王文旭, 黄冰玉, 谈利承, 等. 应用化学, 2018, 35(9), 1005.
5 Mei H Z. Preparation and properties of additive liquid silicone rubber. Master’s Thesis, Beijing Institute of Technology, China, 2016 (in Chinese).
梅豪正. 加成型液体硅橡胶的制备及性能研究. 硕士学位论文, 北京理工大学, 2016.
6 Xu C, Yan N, Yang C, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1), 142.
7 Fan Y R, Xu Z J, Tang S C. Elastomers, 2001, 11(3), 44 (in Chinese).
范元蓉, 徐志君, 唐颂超. 弹性体, 2001, 11(3), 44.
8 Li Y F, Zang C G, Zhang Y L. Materials Chemistry and Physics, 2020, 248, 122734.
9 Li J H, Li B, Peng D, et al. Materials Reports, 2017, 31(S1), 309 (in Chinese).
李金辉, 李冰, 彭丹, 等. 材料导报, 2017, 31(S1), 309.
10 Xie Y F, Rao Q H, Li Y, et al. Industrial Catalysis, 2018, 26(9), 11 (in Chinese).
谢云飞, 饶秋华, 李瑜, 等. 工业催化, 2018, 26(9), 11.
11 Xu Z T, You W, Zheng H L. Chemical Design Communication, 2020, 46(9), 91 (in Chinese).
徐镇田, 游文, 郑浩岚. 化工设计通讯, 2020, 46(9), 91.
12 Park J J, Lee J Y, Hong Y G. Polymer, 2020, 197, 122493.
13 Li L, Chen L Y, Hu S, et al. Organosilicon Materials, 2020, 34(3), 39 (in Chinese).
李露, 陈丽云, 胡盛, 等. 有机硅材料, 2020, 34(3), 39.
14 Sarath P S, Pahovnik D, Utrosa P, et al. Journal of Polymer Research, 2021, 28, 446.
15 Guo L, Xu H, Wu N, et al. e-Polymers, 2023, 23, 20228105.
16 Song J N, Peng Z L, Zhang Y. Chemical Engineering Journal, 2020, 391, 123476.
17 Han J H. Preparation and application of high wear-resisting additive liquid silicone rubber material. Master’s Thesis, Nanchang University, China, 2020 (in Chinese).
韩纪慧. 高耐磨加成型液体硅橡胶材料的制备与应用. 硕士学位论文, 南昌大学, 2020.
18 Bai H Q, Yi S, Chi H. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2017, 32(2), 229.
19 Shit S C, Shah P. National Academy Science Letters, 2013, 36(4), 355.
20 Liu S H. Materials Development and Application, 2017(2), 99. (in Chinese).
刘升华. 材料开发与应用, 2017(2), 99.
21 Guo Y, Ruan K, Shi X, et al. Composites Science and Technology, 2020, 193, 108134.
22 Feng Q, Zhang D L, Zha J, et al. Journal of Applied Polymer Science, 2020, 137(45), 49399.
23 Zou Z, Wu W, Wang Y, et al. Soft Materials, 2019, 17(3), 297.
24 Ou Z, Gao F, Zhao H, et al. RSC Advances, 2019, 9(49), 28851.
25 Zhang X, Yi J, Yin Y, et al. Diamond and Related Materials, 2021, 117, 108485.
26 Zhou Q, Wu B, Sun W K, et al. Plastic Science and Technology, 2022, 50(8), 38 (in Chinese).
周琴, 吴兵, 孙文奎, 等. 塑料科技, 2022, 50(8), 38.
27 Chen C, Fang X, Xu J, et al. Synthetic Rubber Industry, 2022, 45(3), 238 (in Chinese).
陈琛, 方晓, 许钧, 等. 合成橡胶工业, 2022, 45(3), 238.
28 Liu J, Yao Y, Chen S, et al. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106645.
29 Cheng X T, Wu X R, Liang Z W, et al. Organosilicon Materials, 2022, 36(2), 33 (in Chinese).
程宪涛, 吴向荣, 梁桢威, 等. 有机硅材料, 2022, 36(2), 33.
30 Wu J K, Zheng K W, Nie X C, et al. Materials, 2022, 15(3), 991.
31 Pan Z, Huang B, Zhu L, et al. Journal of Adhesion Science and Technology, 2020, 34(7), 792.
32 Zhao X W, Zang C G, Wen Y Q, et al. Journal of Adhesion Science and Technology, 2019, 33(8), 861.
33 Wei Z Y, Zhang L Q, Tian M. Synthetic Rubber Industry, 2011, 34(1), 74 (in Chinese).
韦震宇, 张立群, 田明. 合成橡胶工业, 2011, 34(1), 74.
34 Sun M W, Liu T, Ma F G. Organosilicon Materials, 2014, 28(4), 326 (in Chinese).
孙名伟, 刘涛, 马凤国. 有机硅材料, 2014, 28(4), 326.
35 Januszewski R, Dutkiewicz M, Maciejewski H, et al. Reactive and Functional Polymers, 2018, 123, 1.
36 Wang Y, Lai X, Li H, et al. Composites Communications, 2021, 25, 100683.
37 Shen S, Guo H, Ma X, et al. Polymer Composites, 2022, 43(5), 2896.
38 Qiu J, Lai X, Fang W, et al. Polymer Degradation and Stability, 2017, 144, 176.
39 Chi Q G, Li Z, Zhang T D, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3), 681.
40 Chen Q G, Shang N Q, Qin Y J, et al. High Voltage Technology, 2017, 43(11), 3521 (in Chinese).
陈庆国, 尚南强, 秦艳军, 等. 高压电技术, 2017, 43(11), 3521.
41 Sarkarat M, Lanagan M, Ghosh D, et al. Materials Today Communications, 2020, 23, 100947.
42 Liu Y, Zhang C, Zhang B, et al. Journal of Materials Chemistry A, 2022, 10(31), 16547.
43 Long J. Preparation and properties of triboelectric nanogenerator based on silicone rubber core fiber. Master’s Thesis, Donghua University, China, 2023 (in Chinese).
龙静. 基于硅橡胶皮芯纤维摩擦纳米发电机制备及性能研究. 硕士学位论文, 东华大学, 2023.
44 Song P, Zhang Y. Composites Science and Technology, 2022, 222, 109366.
45 Li P G, Yuan Z L, Song X F, et al. Organosilicon Materials, 2015, 29(6), 474 (in Chinese).
李培国, 袁振乐, 宋新峰, 等. 有机硅材料, 2015, 29(6), 474.
46 Yilmaz-Bayraktar S, Foremny K, Kreienmeyer M, et al. Polymers, 2022, 14(9), 1766.
47 Wang Z, Zhao Y, Ji J, et al. Materials Technology, 2022, 37(12), 2123.
48 Shim H, Jang S, Jang J G, et al. Nano Research, 2022, 15, 758.
49 Wang M, Yan Z, Wang T, et al. Nature Electronics, 2020, 3(9), 563.
50 Magaña H, Becerra C D, Serrano-Medina A, et al. Polymers, 2020, 12(6), 1297.
51 Chen Q, Zhao J, Ren J, et al. Advanced Functional. Materials, 2019, 29(23), 1900469.
52 Ji Z, Jiang D, Zhang X, et al. Macromol. Rapid Commun, 2020, 41(10), 200.
53 Zhao T, Yu R, Li S, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14391.
54 Kuru I, Maier H, Müller M, et al. Hearing Research, 2016, 340, 204.
55 Calcagnile P, Cacciatore G, Demitri C, et al. Materials, 2018, 11(9), 1578.
56 Wang L, Liu P, Li L, et al. In: 2018 IEEE 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). Guangdong, 2018, pp.1.
57 Miyamoto Y, Yoshitake M, Yoshida H, et al. U. S. Patent, US9464211, 2016.
58 Hopmann C, Röbig M. Progress in Rubber Plastics and Recycling Technology, 2017, 33(2), 63.
59 Zhu H J, Dai Z L, Tu W P. Materials Science, 2018, 246(2), 185.
60 Klaus P. Atzautotechnology, 2001, 1(5), 32.
61 Dawir M. Sealing Technology, 2008, 2008(7), 10.
62 Deng L H, Zeng X L, Zhu C, et al. Organosilicon Materials, 2019, 33(6), 475 (in Chinese).
邓丽华, 曾祥雷, 朱超, 等. 有机硅材料, 2019, 33(6), 475.
63 Zou L L, Deng D Y. Organosilicon Materials, 2017, 31(6), 447 (in Chinese).
邹磊磊, 邓冬云. 有机硅材料, 2017, 31(6), 447.
64 Organosilicon Materials, 2022, 36(3), 15 (in Chinese).
有机硅材料, 2022, 36(3), 15.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[7] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[8] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[9] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[10] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[11] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[14] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[15] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed