Abstract: Addition liquid silicone rubber (ALSR) is an important application of hydrosilylation addition reaction in the field of silicone rubber curing and crosslinking. As it is crosslinked by addition, ALSR does not produce by-products during the curing process, has very small shrinkage, can be deeply solidified, and has no corrosion to the materials in contact. Therefore, there are no bubbles and sand holes during processing and molding, with stable size, excellent heat shock resistance, and has important application value in many fields. This article first outlines the basic composition and curing mechanism of ALSR, and then reviews the research progress in mechanical, thermal, adhesive, and flame retardant properties of ALSR in recent years, as well as its applications in the fields of electronic and electrical, medical, 3D printing, optical, and automotive. Finally, it proposes that high-performance, multifunctional, composite, and advanced processing are the future development directions of ALSR.
1 Zhu G Y. Synthesis and properties of new additive liquid silicone rubber. Master’s Thesis, Zhongkai University of Agricultural Engineering, China, 2017 (in Chinese). 朱贵有. 新型加成型液体硅橡胶的合成及其性能研究. 硕士学位论文, 仲恺农业工程学院, 2017. 2 Fink J K. Liquid silicone rubber: chemistry, materials, and processing, John Wiley & Sons, USA, 2019, pp.1. 3 Yang L N, Gao J F, Zhou G Q. Organosilicon Materials, 2011, 25(6), 410 (in Chinese). 杨丽娜, 高建峰, 周光强. 有机硅材料, 2011, 25(6), 410. 4 Wang W X, Huang B Y, Tan L C, et al. Chinese Journal of Applied Chemistry, 2018, 35(9), 1005 (in Chinese). 王文旭, 黄冰玉, 谈利承, 等. 应用化学, 2018, 35(9), 1005. 5 Mei H Z. Preparation and properties of additive liquid silicone rubber. Master’s Thesis, Beijing Institute of Technology, China, 2016 (in Chinese). 梅豪正. 加成型液体硅橡胶的制备及性能研究. 硕士学位论文, 北京理工大学, 2016. 6 Xu C, Yan N, Yang C, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(1), 142. 7 Fan Y R, Xu Z J, Tang S C. Elastomers, 2001, 11(3), 44 (in Chinese). 范元蓉, 徐志君, 唐颂超. 弹性体, 2001, 11(3), 44. 8 Li Y F, Zang C G, Zhang Y L. Materials Chemistry and Physics, 2020, 248, 122734. 9 Li J H, Li B, Peng D, et al. Materials Reports, 2017, 31(S1), 309 (in Chinese). 李金辉, 李冰, 彭丹, 等. 材料导报, 2017, 31(S1), 309. 10 Xie Y F, Rao Q H, Li Y, et al. Industrial Catalysis, 2018, 26(9), 11 (in Chinese). 谢云飞, 饶秋华, 李瑜, 等. 工业催化, 2018, 26(9), 11. 11 Xu Z T, You W, Zheng H L. Chemical Design Communication, 2020, 46(9), 91 (in Chinese). 徐镇田, 游文, 郑浩岚. 化工设计通讯, 2020, 46(9), 91. 12 Park J J, Lee J Y, Hong Y G. Polymer, 2020, 197, 122493. 13 Li L, Chen L Y, Hu S, et al. Organosilicon Materials, 2020, 34(3), 39 (in Chinese). 李露, 陈丽云, 胡盛, 等. 有机硅材料, 2020, 34(3), 39. 14 Sarath P S, Pahovnik D, Utrosa P, et al. Journal of Polymer Research, 2021, 28, 446. 15 Guo L, Xu H, Wu N, et al. e-Polymers, 2023, 23, 20228105. 16 Song J N, Peng Z L, Zhang Y. Chemical Engineering Journal, 2020, 391, 123476. 17 Han J H. Preparation and application of high wear-resisting additive liquid silicone rubber material. Master’s Thesis, Nanchang University, China, 2020 (in Chinese). 韩纪慧. 高耐磨加成型液体硅橡胶材料的制备与应用. 硕士学位论文, 南昌大学, 2020. 18 Bai H Q, Yi S, Chi H. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2017, 32(2), 229. 19 Shit S C, Shah P. National Academy Science Letters, 2013, 36(4), 355. 20 Liu S H. Materials Development and Application, 2017(2), 99. (in Chinese). 刘升华. 材料开发与应用, 2017(2), 99. 21 Guo Y, Ruan K, Shi X, et al. Composites Science and Technology, 2020, 193, 108134. 22 Feng Q, Zhang D L, Zha J, et al. Journal of Applied Polymer Science, 2020, 137(45), 49399. 23 Zou Z, Wu W, Wang Y, et al. Soft Materials, 2019, 17(3), 297. 24 Ou Z, Gao F, Zhao H, et al. RSC Advances, 2019, 9(49), 28851. 25 Zhang X, Yi J, Yin Y, et al. Diamond and Related Materials, 2021, 117, 108485. 26 Zhou Q, Wu B, Sun W K, et al. Plastic Science and Technology, 2022, 50(8), 38 (in Chinese). 周琴, 吴兵, 孙文奎, 等. 塑料科技, 2022, 50(8), 38. 27 Chen C, Fang X, Xu J, et al. Synthetic Rubber Industry, 2022, 45(3), 238 (in Chinese). 陈琛, 方晓, 许钧, 等. 合成橡胶工业, 2022, 45(3), 238. 28 Liu J, Yao Y, Chen S, et al. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106645. 29 Cheng X T, Wu X R, Liang Z W, et al. Organosilicon Materials, 2022, 36(2), 33 (in Chinese). 程宪涛, 吴向荣, 梁桢威, 等. 有机硅材料, 2022, 36(2), 33. 30 Wu J K, Zheng K W, Nie X C, et al. Materials, 2022, 15(3), 991. 31 Pan Z, Huang B, Zhu L, et al. Journal of Adhesion Science and Technology, 2020, 34(7), 792. 32 Zhao X W, Zang C G, Wen Y Q, et al. Journal of Adhesion Science and Technology, 2019, 33(8), 861. 33 Wei Z Y, Zhang L Q, Tian M. Synthetic Rubber Industry, 2011, 34(1), 74 (in Chinese). 韦震宇, 张立群, 田明. 合成橡胶工业, 2011, 34(1), 74. 34 Sun M W, Liu T, Ma F G. Organosilicon Materials, 2014, 28(4), 326 (in Chinese). 孙名伟, 刘涛, 马凤国. 有机硅材料, 2014, 28(4), 326. 35 Januszewski R, Dutkiewicz M, Maciejewski H, et al. Reactive and Functional Polymers, 2018, 123, 1. 36 Wang Y, Lai X, Li H, et al. Composites Communications, 2021, 25, 100683. 37 Shen S, Guo H, Ma X, et al. Polymer Composites, 2022, 43(5), 2896. 38 Qiu J, Lai X, Fang W, et al. Polymer Degradation and Stability, 2017, 144, 176. 39 Chi Q G, Li Z, Zhang T D, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3), 681. 40 Chen Q G, Shang N Q, Qin Y J, et al. High Voltage Technology, 2017, 43(11), 3521 (in Chinese). 陈庆国, 尚南强, 秦艳军, 等. 高压电技术, 2017, 43(11), 3521. 41 Sarkarat M, Lanagan M, Ghosh D, et al. Materials Today Communications, 2020, 23, 100947. 42 Liu Y, Zhang C, Zhang B, et al. Journal of Materials Chemistry A, 2022, 10(31), 16547. 43 Long J. Preparation and properties of triboelectric nanogenerator based on silicone rubber core fiber. Master’s Thesis, Donghua University, China, 2023 (in Chinese). 龙静. 基于硅橡胶皮芯纤维摩擦纳米发电机制备及性能研究. 硕士学位论文, 东华大学, 2023. 44 Song P, Zhang Y. Composites Science and Technology, 2022, 222, 109366. 45 Li P G, Yuan Z L, Song X F, et al. Organosilicon Materials, 2015, 29(6), 474 (in Chinese). 李培国, 袁振乐, 宋新峰, 等. 有机硅材料, 2015, 29(6), 474. 46 Yilmaz-Bayraktar S, Foremny K, Kreienmeyer M, et al. Polymers, 2022, 14(9), 1766. 47 Wang Z, Zhao Y, Ji J, et al. Materials Technology, 2022, 37(12), 2123. 48 Shim H, Jang S, Jang J G, et al. Nano Research, 2022, 15, 758. 49 Wang M, Yan Z, Wang T, et al. Nature Electronics, 2020, 3(9), 563. 50 Magaña H, Becerra C D, Serrano-Medina A, et al. Polymers, 2020, 12(6), 1297. 51 Chen Q, Zhao J, Ren J, et al. Advanced Functional. Materials, 2019, 29(23), 1900469. 52 Ji Z, Jiang D, Zhang X, et al. Macromol. Rapid Commun, 2020, 41(10), 200. 53 Zhao T, Yu R, Li S, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14391. 54 Kuru I, Maier H, Müller M, et al. Hearing Research, 2016, 340, 204. 55 Calcagnile P, Cacciatore G, Demitri C, et al. Materials, 2018, 11(9), 1578. 56 Wang L, Liu P, Li L, et al. In: 2018 IEEE 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). Guangdong, 2018, pp.1. 57 Miyamoto Y, Yoshitake M, Yoshida H, et al. U. S. Patent, US9464211, 2016. 58 Hopmann C, Röbig M. Progress in Rubber Plastics and Recycling Technology, 2017, 33(2), 63. 59 Zhu H J, Dai Z L, Tu W P. Materials Science, 2018, 246(2), 185. 60 Klaus P. Atzautotechnology, 2001, 1(5), 32. 61 Dawir M. Sealing Technology, 2008, 2008(7), 10. 62 Deng L H, Zeng X L, Zhu C, et al. Organosilicon Materials, 2019, 33(6), 475 (in Chinese). 邓丽华, 曾祥雷, 朱超, 等. 有机硅材料, 2019, 33(6), 475. 63 Zou L L, Deng D Y. Organosilicon Materials, 2017, 31(6), 447 (in Chinese). 邹磊磊, 邓冬云. 有机硅材料, 2017, 31(6), 447. 64 Organosilicon Materials, 2022, 36(3), 15 (in Chinese). 有机硅材料, 2022, 36(3), 15.