Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 106-111    https://doi.org/10.11896/j.issn.1005-023X.2017.03.017
  新材料新技术 |
矿物固化含Sr、Cs放射性废物研究进展*
王兰1, 侯晨曦1, 樊龙1, 谢忆1, 卢喜瑞1,2
1 西南科技大学核废物与环境安全国防重点学科实验室,绵阳 621010;
2 中国工程物理研究院,绵阳 621900;
Research Progress in Immobilization of Sr and Cs by Mineral Materials
WANG Lan1, HOU Chenxi1, FAN Long1, XIE Yi1, LU Xirui1,2
1 Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010;
2 China Academy of Engineering Physics, Mianyang 621900;
下载:  全 文 ( PDF ) ( 1306KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 放射性元素锶和铯具有半衰期长、生物危害性大等特点,是目前放射性废物安全处理处置的重点之一,利用人造岩石固化含锶、铯放射性废物已成为当前的研究热点。简述了锶、铯的特点及危害,着重介绍了近年来几种典型矿物固化基材(碱硬锰矿、磷灰石、钙钛矿、铯榴石)的研究进展,探讨了现阶段矿物固化锶、铯的研究进展和发展方向,并对未来关于矿物固化锶、铯的材料领域发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兰
侯晨曦
樊龙
谢忆
卢喜瑞
关键词:      放射性废物  矿物基材    
Abstract: The radionuclides strontium and cesium have a long half-life and large biological harmfulness and other characteristics, and become one of the key point on the safety of radioactive waste treatment disposal, and the removal of them by mineral has become a research hotspot. This paper introduces the characteristics and harms of the strontium and cesium. The research progress of four typical potential mineral materials in this field including hollandite, apatite, perovskite and pollucite are reviewed in detail. The status and development of strontium and cesium immobilization with mineral material are discussed. Finally, the future development trends of strontium and cesium incorporated by mineral materials are also mentioned.
Key words:  strontium    cesium    radioactive waste    mineral materials
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB321  
基金资助: *国家自然科学基金(41302028);四川省教育厅重点项目(14ZA0099);核废物与环境安全国防重点学科实验室开放基金(15yyhk10);西南科技大学大学生创新基金项目(cx16-020)
作者简介:  王兰:女,1992年生,硕士研究生,研究方向为高放废物人造岩石固化处理 E-mail:wanglan_only@163.com 卢喜瑞:通讯作者,男,1983年生,博士,副研究员,研究方向为核废物处理与环境修复 E-mail:luxiruimvp116@163.com
引用本文:    
王兰, 侯晨曦, 樊龙, 谢忆, 卢喜瑞. 矿物固化含Sr、Cs放射性废物研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 106-111.
WANG Lan, HOU Chenxi, FAN Long, XIE Yi, LU Xirui. Research Progress in Immobilization of Sr and Cs by Mineral Materials. Materials Reports, 2017, 31(3): 106-111.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.017  或          https://www.mater-rep.com/CN/Y2017/V31/I3/106
1 Uggla Y. Risk and safety analysis in long-term perspective[J]. Futures,2004,36(5):549.
2 El-Ghonemy H, Watts L, Fowler L. Treatment of uncertainty and developing conceptual models for environmental risk assessments and radioactive waste disposal safety cases[J]. Environ Int,2005,31(1):89.
3 Broden K, Olsson G. Final disposal possibilities of radioactive waste components from ITER [J]. Fusion Eng Des,2003,69(4):695.
4 姜胜阶,任凤仪.核燃料后处理工学[M].北京:原子能出版社,1995:320.
5 Chen S,Li Y X. Research actualities on high-level waste forms[J]. Mater Rev,2005,19(11):53(in Chinese).
陈松,李玉香.高放废物固化基材研究现状 [J].材料导报,2005,19(11):53.
6 Che C X, Teng Y C, Gui Q. Research and application status of ra-dioactive waste solidification[J]. Mater Rev,2006,20(2):94(in Chinese).
车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006,20(2):94.
7 Riley B J, Vienna J D, Strachan D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: A review[J]. J Nucl Mater,2016,470:307.
8 Krausova K, Gautron L, Karnis A, et al. Glass ceramics and mine-ral materials for the immobilization of lead and cadmium[J]. Ceram Int,2016,42(7):8779.
9 Wagh A S, Sayenko S Y, Shkuropatenko V A, et al. Experimental study on cesium immobilization in struvite structures[J]. J Hazard Mater,2016,302:241.
10 Gong H F, Ma J P, Li G P, et al. Present research on synroc forms[J]. J Gansu Sci,2009,21(4):150(in Chinese).
龚恒风,马俊平,李公平,等.人造岩石固化体的研究现状[J].甘肃科学学报,2009,21(4):150.
11 Ringwood A E, Kesson S E, Ware N G, et al. Immobilisation of high level nuclear reactor wastes in SYNROC[J]. Nature,1979,278(5701):219.
12 Chappell A. The limitations of using 137Cs for estimating soil redistribution in semi-arid environments[J]. Geomorphology,1999,29(1):135.
13 Ojovan M I, Lee W E. An introduction to nuclear waste immobilization[J]. Mater Today,2006,9(3):55.
14 Entry J A, Vance N C, Hamilton M A, et al. Phytoremediation of soil contaminated with low concentrations of radionuclides[J]. Water Air Soil Pollution,1996,88(1-2):167.
15 Tan H B, Li Y X. Summary of solidification measures of radioactive waste[J]. Yunnan Environ Sci,2004,23(4):1(in Chinese).
谭宏斌,李玉香.放射性废物固化方法综述[J].云南环境科学,2004,23(4):1.
16 Zagrai M, Rus L, Rada S, et al. Lead metallic-lead dioxide glasses as alternative of immobilization of the radioactive wastes[J]. J Non-Cryst Solids,2014,405:129.
17 Arod J. Bituminization of radioactive wastes: Safety studies[J]. Nucl Chem Waste Manag,1982,3(3):179.
18 Olson R A, Tennis P D, Bonen D, et al. Early containment of high-alkaline solution simulating low-level radioactive waste in blended cement[J]. J Hazard Mater,1997,52(2):223.
19 Micheline M, Siham K, Emmanuel G. Physicochemical equilibria of cement-based materials in aggressive environments-experiment and modeling[J]. Cem Concr Res,2004,34(9):1569.
20 Wu L, Schliesser J, Woodfield B F, et al. Heat capacities, standard entropies and Gibbs energies of Sr-, Rb-and Cs-substituted barium aluminotitanate hollandites[J].J Chem Thermodynamics,2016,93:1.
21 Aubin-Chevaldonnet V, Caurant D, Dannoux A, et al. Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M=Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioa-ctive cesium immobilization[J]. J Nucl Mater,2007,366:137.
22 Teng Y C, Zhou S G, Xiao Z X, et al. Chemical solid-soluted content of strontiumin solid solution of hollandite[J]. J Xi’an Jiaotong University,2005,39(1):100(in Chinese).
滕元成,周时光,肖正学,等.Sr 在碱硬锰矿固溶体中的化学固溶量研究[J]. 西安交通大学学报,2005,39(1):100.
23 Zhao Y L, Li B J, Zhou H, et al. Immobizition of simulated cesium-137 waste in synroc[J]. J Nuclear Radiochem,2005,27(3):152(in Chinese).
赵昱龙,李宝军,周慧,等.人造岩石固化模拟137Cs 废物的研究[J].核化学与放射化学,2005,27(3):152.
24 Teng Y C, Zhou S G, Shi Z K, et al. Study on solid-dissolved ce-sium in the lattice of hollandite[J]. Nucl Techn,2006,29(6):476(in Chinese).
滕元成,周时光,石正坤,等.碱硬锰矿晶平格固化Cs的研究[J].核技术,2006,29(6):476.
25 Xu H, Wu L, Zhu J, et al. Synthesis, characterization and thermochemistry of Cs-, Rb-and Sr-substituted barium aluminium titanate hollandites[J]. J Nucl Mater,2015,459:70.
26 Carter M L, Vance E R, Mitchell D R G, et al. Fabrication, characterization, and leach testing of hollandite, (Ba, Cs)(Al, Ti)2Ti6O16[J]. J Mater Res,2002,17(10):2578.
27 Suzuki-Muresan T, Vandenborre J, Abdelouas A, et al. Studies of (Cs, Ba)-hollandite dissolution under gamma irradiation at 95 ℃ and at pH 2.5, 4.4 and 8.6[J]. J Nucl Mater,2011,419(1):281.
28 Amoroso J, Marra J, Conradson S D, et al. Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A= Cr, Fe, Al[J]. J Alloys Compd,2014,584:590.
29 Abdelouas A, Utsunomiya S, Suzuki T, et al. Effects of ionizing radiation on the hollandite structure-type: Ba0.85Cs0.26Al1.35Fe0.77-Ti5.90O16[J]. Am Mineralogist,2008,93(1):241.
30 Chen Z Y, Zeng L S, Meng L J. Mineralogy and trace elemental geo-chemistry of apatite in Sulu eclogites[J]. Acta Petrol Sin,2009(7):1663(in Chinese).
陈振宇,曾令森,孟丽娟.苏鲁榴辉岩中磷灰石的矿物学和微量元素地球化[J]. 岩石学报,2009(7):1663.
31 潘兆橹.结晶学及矿物学[M].北京:地质出版社,1984:11.
32 Zeng L S, Chen J, Gao L E, et al. The geochemical nature of apatites in high Sr/Y two-mica granites from the North Himalayan Gneiss Domes, southern Tibet[J]. Acta Petrol Sin,2012,28(9):2981(in Chinese).
曾令森,陈晶,高利娥,等.藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义[J].岩石学报,2012,28(9):2981.
33 Liu Y, Peng M S. Advances in the researches on structural substitution of apatite[J]. Acta Petrol Miner,2003,22(4):413(in Chinese).
刘羽,彭明生.磷灰石结构替换的研究进展[J]. 岩石矿物学杂志,2003,22(4):413.
34 Liu Y. Mineralogical spectroscopy of apatites[D]. Guangzhou: Zhongshan University,2003(in Chinese).
刘羽.磷灰石的矿物谱学研究[D].广州:中山大学,2003.
35 Xiang G H. Preparation and performance study of monzite-apatite glass-ceramic waste forms[D]. Mianyang: Southwest University of Science and Technology,2012(in Chinese).
向光华.独居石-磷灰石玻璃陶瓷固化体的制备与性能研究[D].绵阳:西南科技大学,2012.
36 Kumar S P, Buvaneswari G. Synthesis of apatite phosphates containing Cs+, Sr2+ and RE3+ ions and chemical durability studies[J]. Mater Res Bull,2013,48(2):324.
37 Boughzala K, Bouzouita K, Salem E B, et al. Synthesis and characterization of strontium-lanthanum apatites[J]. Mater Res Bull,2007,42(7):1221.
38 Boughzala K, Gmati N, Bouzouita K, et al. étude structurale de britholite au césium Sr7La2Cs(PO4)5(SiO4)F2[J]. Comptes Rendus Chim,2010,13(11):1377.
39 Zhao Y L. The study of synroc for simulated nuclide waste90 Sr and 137Cs immobilization[D]. Beijing: China Institute of Atomic Energy,2005(in Chinese).
赵昱龙.人造岩石固化模拟90 Sr, 137Cs核素废物研究[D].北京:中国原子能科学研究院,2005.
40 Wu Q, Zhao B Y. Preparation, structure and properties of perovskite type strontium titanate[J]. New Chem Mater,2002,30(8):17(in Chinese).
吴庆,赵斌元.钙钛矿型钛酸锶的制备,结构与性能[J].化工新型材料,2002,30(8):17.
41 Navrotsky A, Weidner D J. Perovskite: A structure of great interest to geophysics and materials science[M]. Washington DC: American Geophysical Union Geophysical Monograph Series,1989.
42 Zoltai T, Stout J H. Mineralogy: Concepts and principles[M]. Minneapolis, MN: Burgess Publishing Company,1984.
43 Krainyukova N V, Butskii V V. RHEED study of stepped (001) surface of strontium titanate[J]. Appl Surf Sci,2004,235(1):32.
44 Mahadik P S, Sengupta P, Halder R, et al. Perovskite-Ni compo-site: A potential route for management of radioactive metallic waste[J]. J Hazard Mater,2015,287:207.
45 Zhang R Z. Self-propagation high-temperature synthesis for radiocative waste immobilization[D]. Beijing: University of Science and Technology Beijing,2005(in Chinese).
张瑞珠.利用自蔓延高温合成技术固化放射性废物[D].北京:北京科技大学,2005.
46 Zhang R Z, Guo Z M, Jia G Y. Immobilization of nuclear waste strontia by perovskite[J]. J Chinese Ceram Soc,2005,33(8):1045(in Chinese).
张瑞珠,郭志猛,贾光耀.用钙钛矿固化核素废物锶[J].硅酸盐学报,2005,33(8):1045.
47 Zhang R Z, Zhao J H, Guo Z M. Synthesis of SrTiO3 by double-SHS for immobilization of high level radioactive waste[J]. Chinese J Rare Metals,2009(1):66 (in Chinese).
张瑞珠,赵军华,郭志猛.二次自蔓延高温合成 SrTiO3固化高放废物[J].稀有金属,2009(1):66.
48 Liang P Y, Chen Q S, Ma H, et al. High containment technology for immobilizing simulated radioactive element Sr[J]. J Ceram,2011,32(2):197(in Chinese).
梁磐仪,陈泉水,马辉,等.高包容模拟放射性核素 Sr 固化技术研究[J].陶瓷学报,2011,32(2):197.
49 Jaffe J E, Van Ginhoven R M, Jiang W. Interstitial and substitutional zirconium in SrTiO3[J]. Comput Mater Sci,2012,53(1):153.
50 Wang S, Tang M, Brinkman K S, et al. Ion-irradiation induced reduction in Sr2Fe1.5Mo0.5O6-δ perovskite[J]. Nucl Instruments Methods Phys Res Section B: Beam Interactions with Materials and Atoms,2014,326:298.
51 Bao W, Xu S, Li L, et al. Solidification of Sr-containing stripping solutions in titanate ceramics[J]. J Nucl Mater,2002,301(2):237.
52 Li F, Xia X, Li Q, et al. The preparation and oxygen permeability of calcium-doped Ba-Sr-Ca-Co-Fe-O perovskite material[J]. Ceram Int,2015,41(9):12295.
53 Hu H, Wang R C, Zhang A C, et al. Cs-enriched minerals and their significance on nuclear waste disposal[J]. Acta Geol Sin,2007,80(11):1779(in Chinese).
胡欢,王汝成,张爱铖,等.富铯矿物及其在核废物地质处置上的意义[J].地质学报,2007,80(11):1779.
54 Fang J D, Sun S Z, Xu J F, et al. Preparation and characterization of 137Cs-pollucite[J]. J Nucl Radiochem,1984,6(1):31(in Chinese).
方吉东,孙树正,许金凤,等.137Cs-铯榴石化合物的制备和性质研究[J].核化学与放射化学,1984,6(1):31.
55 Yanase I, Ishikawa Y, Matsuura S, et al. Effects of PMMA on po-rous structure of pollucite[J]. J Eur Ceram Soc,2006,26(4):475.
56 Yanase I, Saito Y, Kobayashi H. Synthesis and thermal expansion of (V, P, Nb)-replaced pollucite[J]. Ceram Int,2012,38(1):811.
57 Jing Z, Hao W, He X, et al. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium[J]. J Hazard Mater,2016,306:220.
58 Hoyle S L, Grutzeck M W. Incorporation of cesium by hydrating calcium aluminosilicates[J]. J Am Ceram Soc,1989,72(10):1938.
59 Hess N J, Espinosa F J, Conradson S D, et al. Beta radiation effects in 137 Cs-substituted pollucite[J]. J Nucl Mater,2000,281(1):22.
60 Anchell J L, White J C, Thompson M R, et al. An ab initio periodic hartree-fock study of group IA cations in ANA-type zeolites[J]. J Phys Chem,1994,98(16):4463.
[1] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[2] 童钦, 霍冀川, 张行泉, 霍泳霖, 徐冲, 蒋勤, 宋巍伟. 模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究[J]. 材料导报, 2023, 37(24): 21110089-5.
[3] 宋小勇, 房硕洋, 赵明, 孙陆军, 姜志忠. 镍基少层石墨烯电极场发射性能机制与微结构分析[J]. 材料导报, 2023, 37(12): 22040305-6.
[4] 霍泳霖, 霍冀川, 张行泉, 秦桂璐. 玄武岩的开发利用进展[J]. 材料导报, 2022, 36(6): 20080281-11.
[5] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[6] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[7] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[8] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[9] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[10] 张鹏, 薛松柏, 费文潘, 王博, 韩翼龙, 裴夤崟, 钟素娟. 稀土元素Ce对Sr变质的Al-5Si铝合金焊丝含氢量和焊缝气孔率的影响[J]. 材料导报, 2020, 34(2): 2100-2104.
[11] 费文潘, 薛松柏, 陈宇豪, 吴杰, 王博, 林中强. Sr、La复合添加对SAl 4047焊丝氢含量及焊接接头力学性能的影响[J]. 材料导报, 2020, 34(10): 10150-10156.
[12] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[13] 秦晓素,黄洁,雷云,杨泽斌,陈庆华,颜廷亭. 明胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能[J]. 《材料导报》期刊社, 2018, 32(12): 1967-1972.
[14] 张文博, 王华, 许积文, 刘国保, 谢航, 杨玲. 铋掺杂对SrTiO3薄膜微观结构及阻变行为的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1932-1937.
[15] 刘旭东, 毕孝国, 孙旭东. 焰熔法生长钛酸锶单晶体生长室内温度分布的数值模拟*[J]. 《材料导报》期刊社, 2017, 31(16): 138-143.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed