Current Status and Challenges in the Application of Cobalt-based Cathode Materials in Zinc Batteries
SHANG Wenxu1,2, YU Wentao1, HE Yi1, MA Yanyi1, TAN Peng1,*
1 Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei 230026, China 2 Deep Space Exploration Laboratory, Hefei 230088, China
Abstract: Benefiting from abundant mineral resources, ultra-high theoretical capacity and excellent safety, aqueous zinc batteries have become a strong contender for next-generation energy storage devices. As an ideal cathode material candidate for zinc batteries, cobalt-based electrode materials have received increasing attention in recent years due to their high output voltage, high theoretical capacity and excellent redox ability (Co2+↔Co3+↔Co4+). Although cobalt-based catalysts applied to zinc-air batteries have been reviewed by researchers, they mainly focus on a single catalytic direction, and a systematic summary of the multifunctional properties of cobalt-based electrode materials is lacking. This review introduces the application of multifunctional properties of cobalt-based cathode materials in zinc batteries, combining both their redox and oxygen catalysis capabilities, expanding from zinc-cobalt batteries to zinc-cobalt hybrid systems. Then, the charging and discharging mechanisms in the two battery systems are introduced, following by the current optimization strategies of cobalt-based materials in zinc-cobalt batteries and the design of electrode/electrolyte three-phase interface in zinc-cobalt hybrid batteries. Finally, this paper introduces the shortcomings of the current research and provides an outlook on future research.
尚文旭, 俞文涛, 何义, 马彦义, 谈鹏. 锌电池中钴基正极材料的应用现状与挑战[J]. 材料导报, 2024, 38(6): 23040024-10.
SHANG Wenxu, YU Wentao, HE Yi, MA Yanyi, TAN Peng. Current Status and Challenges in the Application of Cobalt-based Cathode Materials in Zinc Batteries. Materials Reports, 2024, 38(6): 23040024-10.
1 King S D. Science, 2017, 355, 6321. 2 Gong J, Li C, Wasielewski M R. Chemical Society Reviews, 2019, 48, 1862. 3 Kamarudin M A, Khan A A, Said S M, et al. Liquid Crystals, 2018, 45, 112. 4 Alipoori S, Mazinani S, Aboutalebi S H, et al. Journal of Energy Sto-rage, 2020, 27, 101072. 5 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334, 928. 6 Singhal S C. Solid State Ionics, 2000, 135, 305. 7 Yoshino A. Angewandte Chemie-International Edition, 2012, 51, 5798. 8 Abada S, Marlair G, Lecocq A, et al. Journal of Power Sources, 2016, 306, 178. 9 Li H, Ma L, Han C, et al. Nano Energy, 2019, 62, 550. 10 Wang J, Xu J, Guo X, et al. Applied Catalysis B: Environmental, 2021, 298, 120539. 11 Liu J, Wang C, Sun H, et al. Applied Catalysis B: Environmental, 2020, 279, 119407. 12 Logeshwaran N, Ramakrishnan S, Chandrasekaran S S, et al. Applied Catalysis B: Environmental, 2021, 297, 120405. 13 Mainar A R, Colmenares L C, Blázquez J A, et al. International Journal of Energy Research, 2018, 42, 903. 14 Ju Z, Zhao Q, Chao D, et al. Advanced Energy Materials, 2022, 2201074, 1. 15 Shang W, Yu W, Liu Y, et al. Energy Storage Materials, 2020, 31, 44. 16 Lyu L, Gao Y, Wang Y, et al. Chemical Physics Letters, 2019, 723, 102. 17 Ullah S, Ahmed F, Badshah A, et al. PLoS One, 2013, 8, e75999. 18 Amlie R F, Rüetschi P. Journal of the Electrochemical Society, 1961, 108, 813. 19 Zhou W, Zhu D, He J, et al. Energy & Environmental Science, 2020, 13, 4157. 20 He D, Song X, Li W, et al. Angewandte Chemie-International Edition, 2020, 59, 2. 21 Chen D, Peng L, Yuan Y, et al. Nano Letters, 2017, 17, 3907. 22 Sun S, Sun Y, Zhou Y, et al. Angewandte Chemie-International Edition, 2019, 58, 6042. 23 Tomon C, Sarawutanukul S, Duangdangchote S, et al. Chemical Communications, 2019, 55, 5855. 24 Casella I G, Gatta M. Journal of Electroanalytical Chemistry, 2002, 534, 31. 25 He J, Yu Y, Zeng C, et al. Journal of Power Sources, 2023, 562, 232782. 26 Li W S, Chang M L, Cheng H C. Chemical Physics Letters, 2020, 739, 137003. 27 Wang X, Wang F, Wang L, et al. Advanced Materials, 2016, 28, 4904. 28 Liu X, Tang T, Jiang W, et al. Chemical Communications, 2020, 56, 5374. 29 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29, 1604685. 30 Tan P, Chen B, Xu H, et al. Small, 2018, 14, 1800225. 31 Song M, Tan H, Chao D, et al. Advanced Functional Materials, 2018, 28, 1802564. 32 Lee J S, Kim S T, Cao R, et al. Advanced Energy Materials, 2011, 1, 34. 33 Shang W, Yu W, Tan P, et al. Journal of Power Sources, 2019, 421, 6. 34 Ma L, Chen S, Pei Z, et al. ACS Nano, 2018, 12, 8597. 35 Guan Q, Li Y, Bi X, et al. Advanced Energy Materials, 2019, 9, 1901434. 36 Liang X, Wang F, Chen M, et al. Ceramics International, 2018, 44, 16791. 37 Liu S, Ni D, Li H F, et al. Journal of Materials Chemistry A, 2018, 6, 10674. 38 Tan P, Chen B, Xu H, et al. Applied Catalysis B: Environmental, 2019, 241, 104. 39 Shang W, Yu W, Xiao X, et al. Electrochimica Acta, 2020, 353, 136535. 40 Lu Y, Wang J, Zeng S, et al. Journal of Materials Chemistry A, 2019, 7, 21678. 41 Wang H, Liu J, Wang J, et al. ACS Applied Materials & Interfaces, 2018, 11, 49. 42 Zhang S W, Yin B S, Luo Y Z, et al. Nano Energy, 2019, 68, 104314. 43 Zeng Y, Lai Z, Han Y, et al. Advanced Materials, 2018, 30, 1802396. 44 Tang Y, Li X, Lv H, et al. Advanced Energy Materials, 2020, 10, 2000892. 45 Shang W, Yu W, Xiao X, et al. Small, 2022, 18, 2107149. 46 Cheng F, Shen J, Peng B, et al. Nature Chemistry, 2010, 3, 79. 47 Ye S, Zhang Y, Xiong W, et al. Nanoscale, 2020, 12, 11079. 48 Liu S, Hui K S, Hui K N, et al. Journal of Materials Chemistry A, 2016, 4, 8061. 49 Li H, Vojvodic A, He J, et al. ACS Catalysis, 2015, 5, 4485. 50 Chi B, Lin H, Li J. International Journal of Hydrogen Energy, 2008, 33, 4763 51 Yu Z Y, Chen L F, Yu S H. Journal of Materials Chemistry A, 2014, 2, 10889. 52 Shang W, Yu W, Xiao X, et al. Journal of Power Sources, 2021, 483, 229192. 53 Zhai T, Wan L, Sun S, et al. Advanced Materials, 2017, 29, 1604167. 54 Tan P, Chen B, Xu H, et al. Journal of the Electrochemical Society, 2018, 165, A2119. 55 Tan P, Chen B, Xu H, et al. Energy and Environmental Science, 2017, 10, 2056. 56 Wan Y, Yu Y, Cao L, et al. Surface and Coatings Technology, 2016, 307, 316. 57 Li J, Xu S, Hassan M, et al. Journal of Applied Polymer Science, 2019, 136, 1. 58 Tan P, Chen B, Xu H, et al. Electrochimica Acta, 2018, 283, 1028. 59 Shang W, Yu W, Ma Y, et al. Advanced Materials Interfaces, 2021, 8, 2101256. 60 Wu M, Zhang G, Chen N, et al. Energy Storage Materials, 2020, 24, 272. 61 Zhou Y, Song Y, Zhang S, et al. Journal of Materials Chemistry A, 2020, 8, 13996. 62 Zhong Y, Xu X, Liu P, et al. Advanced Energy Materials, 2020, 10, 2002992.