Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 23040024-10    https://doi.org/10.11896/cldb.23040024
  电化学能源材料与器件 |
锌电池中钴基正极材料的应用现状与挑战
尚文旭1,2, 俞文涛1, 何义1, 马彦义1, 谈鹏1,*
1 中国科学技术大学热科学和能源工程系,合肥 230026
2 深空探测实验室(天都实验室),合肥 230088
Current Status and Challenges in the Application of Cobalt-based Cathode Materials in Zinc Batteries
SHANG Wenxu1,2, YU Wentao1, HE Yi1, MA Yanyi1, TAN Peng1,*
1 Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
2 Deep Space Exploration Laboratory, Hefei 230088, China
下载:  全 文 ( PDF ) ( 40818KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受益于丰富的矿产资源、超高的理论容量和卓越的安全性,水系锌电池成为下一代储能设备的有力竞争者。作为锌电池理想的正极材料候选者,近年来钴基电极材料因其高输出电压、高理论容量和优异的氧化还原能力(Co2+↔Co3+↔Co4+)而受到越来越多的关注。虽然研究者对应用于锌空气电池的钴基催化剂进行了文献综述,但是主要集中在单一催化方向,缺乏关于钴基电极材料多功能特性的系统总结。本文介绍了钴基正极材料在锌电池中的多功能特性,结合其氧化还原和氧催化两方面能力,从锌钴电池拓展到复合锌钴电池体系。然后,从两种电池体系中的充放电机理出发,详细介绍了当前锌钴电池中钴基材料的优化策略,以及复合锌钴电池中电极/电解液三相界面的设计方案。最后,本文介绍了当前研究的不足,并对未来研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚文旭
俞文涛
何义
马彦义
谈鹏
关键词:  钴基材料  锌钴电池  复合锌钴电池    
Abstract: Benefiting from abundant mineral resources, ultra-high theoretical capacity and excellent safety, aqueous zinc batteries have become a strong contender for next-generation energy storage devices. As an ideal cathode material candidate for zinc batteries, cobalt-based electrode materials have received increasing attention in recent years due to their high output voltage, high theoretical capacity and excellent redox ability (Co2+↔Co3+↔Co4+). Although cobalt-based catalysts applied to zinc-air batteries have been reviewed by researchers, they mainly focus on a single catalytic direction, and a systematic summary of the multifunctional properties of cobalt-based electrode materials is lacking. This review introduces the application of multifunctional properties of cobalt-based cathode materials in zinc batteries, combining both their redox and oxygen catalysis capabilities, expanding from zinc-cobalt batteries to zinc-cobalt hybrid systems. Then, the charging and discharging mechanisms in the two battery systems are introduced, following by the current optimization strategies of cobalt-based materials in zinc-cobalt batteries and the design of electrode/electrolyte three-phase interface in zinc-cobalt hybrid batteries. Finally, this paper introduces the shortcomings of the current research and provides an outlook on future research.
Key words:  cobalt-based materials    zinc-cobalt battery    hybrid zinc-cobalt battery
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TQ152  
基金资助: 安徽省自然科学基金(2008085ME155);国家创新人才计划青年项目(GG2090007001);中国科学院人才项目(KJ2090130001);中国科学技术大学启动基金(KY2090000044)
通讯作者:  *谈鹏,特任教授、博士研究生导师,系执行主任。入选了中国科学院(2018年)、安徽省(2019年)和国家(2020年)人才计划青年项目。主持科技部重点研发计划项目课题、国家自然科学基金、安徽省自然科学基金和企业技术开发项目多项。主要针对电化学能源系统中多场耦合能质传输前沿问题取得了一系列原创性研究成果,在Proc.Natl.Acad.Sci.、Energy Environ.Sci.等国际知名学术期刊上发表SCI论文130余篇,总引用5 000余次,H指数40;申请中国发明专利21项,10项已授权。   
作者简介:  尚文旭,深空探测实验室(天都实验室)科研人员,2018年于东北大学获得学士学位,2023年于中国科学技术大学获得博士学位。目前主要研究领域为碱性锌电池正极材料优化设计。
引用本文:    
尚文旭, 俞文涛, 何义, 马彦义, 谈鹏. 锌电池中钴基正极材料的应用现状与挑战[J]. 材料导报, 2024, 38(6): 23040024-10.
SHANG Wenxu, YU Wentao, HE Yi, MA Yanyi, TAN Peng. Current Status and Challenges in the Application of Cobalt-based Cathode Materials in Zinc Batteries. Materials Reports, 2024, 38(6): 23040024-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040024  或          https://www.mater-rep.com/CN/Y2024/V38/I6/23040024
1 King S D. Science, 2017, 355, 6321.
2 Gong J, Li C, Wasielewski M R. Chemical Society Reviews, 2019, 48, 1862.
3 Kamarudin M A, Khan A A, Said S M, et al. Liquid Crystals, 2018, 45, 112.
4 Alipoori S, Mazinani S, Aboutalebi S H, et al. Journal of Energy Sto-rage, 2020, 27, 101072.
5 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334, 928.
6 Singhal S C. Solid State Ionics, 2000, 135, 305.
7 Yoshino A. Angewandte Chemie-International Edition, 2012, 51, 5798.
8 Abada S, Marlair G, Lecocq A, et al. Journal of Power Sources, 2016, 306, 178.
9 Li H, Ma L, Han C, et al. Nano Energy, 2019, 62, 550.
10 Wang J, Xu J, Guo X, et al. Applied Catalysis B: Environmental, 2021, 298, 120539.
11 Liu J, Wang C, Sun H, et al. Applied Catalysis B: Environmental, 2020, 279, 119407.
12 Logeshwaran N, Ramakrishnan S, Chandrasekaran S S, et al. Applied Catalysis B: Environmental, 2021, 297, 120405.
13 Mainar A R, Colmenares L C, Blázquez J A, et al. International Journal of Energy Research, 2018, 42, 903.
14 Ju Z, Zhao Q, Chao D, et al. Advanced Energy Materials, 2022, 2201074, 1.
15 Shang W, Yu W, Liu Y, et al. Energy Storage Materials, 2020, 31, 44.
16 Lyu L, Gao Y, Wang Y, et al. Chemical Physics Letters, 2019, 723, 102.
17 Ullah S, Ahmed F, Badshah A, et al. PLoS One, 2013, 8, e75999.
18 Amlie R F, Rüetschi P. Journal of the Electrochemical Society, 1961, 108, 813.
19 Zhou W, Zhu D, He J, et al. Energy & Environmental Science, 2020, 13, 4157.
20 He D, Song X, Li W, et al. Angewandte Chemie-International Edition, 2020, 59, 2.
21 Chen D, Peng L, Yuan Y, et al. Nano Letters, 2017, 17, 3907.
22 Sun S, Sun Y, Zhou Y, et al. Angewandte Chemie-International Edition, 2019, 58, 6042.
23 Tomon C, Sarawutanukul S, Duangdangchote S, et al. Chemical Communications, 2019, 55, 5855.
24 Casella I G, Gatta M. Journal of Electroanalytical Chemistry, 2002, 534, 31.
25 He J, Yu Y, Zeng C, et al. Journal of Power Sources, 2023, 562, 232782.
26 Li W S, Chang M L, Cheng H C. Chemical Physics Letters, 2020, 739, 137003.
27 Wang X, Wang F, Wang L, et al. Advanced Materials, 2016, 28, 4904.
28 Liu X, Tang T, Jiang W, et al. Chemical Communications, 2020, 56, 5374.
29 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29, 1604685.
30 Tan P, Chen B, Xu H, et al. Small, 2018, 14, 1800225.
31 Song M, Tan H, Chao D, et al. Advanced Functional Materials, 2018, 28, 1802564.
32 Lee J S, Kim S T, Cao R, et al. Advanced Energy Materials, 2011, 1, 34.
33 Shang W, Yu W, Tan P, et al. Journal of Power Sources, 2019, 421, 6.
34 Ma L, Chen S, Pei Z, et al. ACS Nano, 2018, 12, 8597.
35 Guan Q, Li Y, Bi X, et al. Advanced Energy Materials, 2019, 9, 1901434.
36 Liang X, Wang F, Chen M, et al. Ceramics International, 2018, 44, 16791.
37 Liu S, Ni D, Li H F, et al. Journal of Materials Chemistry A, 2018, 6, 10674.
38 Tan P, Chen B, Xu H, et al. Applied Catalysis B: Environmental, 2019, 241, 104.
39 Shang W, Yu W, Xiao X, et al. Electrochimica Acta, 2020, 353, 136535.
40 Lu Y, Wang J, Zeng S, et al. Journal of Materials Chemistry A, 2019, 7, 21678.
41 Wang H, Liu J, Wang J, et al. ACS Applied Materials & Interfaces, 2018, 11, 49.
42 Zhang S W, Yin B S, Luo Y Z, et al. Nano Energy, 2019, 68, 104314.
43 Zeng Y, Lai Z, Han Y, et al. Advanced Materials, 2018, 30, 1802396.
44 Tang Y, Li X, Lv H, et al. Advanced Energy Materials, 2020, 10, 2000892.
45 Shang W, Yu W, Xiao X, et al. Small, 2022, 18, 2107149.
46 Cheng F, Shen J, Peng B, et al. Nature Chemistry, 2010, 3, 79.
47 Ye S, Zhang Y, Xiong W, et al. Nanoscale, 2020, 12, 11079.
48 Liu S, Hui K S, Hui K N, et al. Journal of Materials Chemistry A, 2016, 4, 8061.
49 Li H, Vojvodic A, He J, et al. ACS Catalysis, 2015, 5, 4485.
50 Chi B, Lin H, Li J. International Journal of Hydrogen Energy, 2008, 33, 4763
51 Yu Z Y, Chen L F, Yu S H. Journal of Materials Chemistry A, 2014, 2, 10889.
52 Shang W, Yu W, Xiao X, et al. Journal of Power Sources, 2021, 483, 229192.
53 Zhai T, Wan L, Sun S, et al. Advanced Materials, 2017, 29, 1604167.
54 Tan P, Chen B, Xu H, et al. Journal of the Electrochemical Society, 2018, 165, A2119.
55 Tan P, Chen B, Xu H, et al. Energy and Environmental Science, 2017, 10, 2056.
56 Wan Y, Yu Y, Cao L, et al. Surface and Coatings Technology, 2016, 307, 316.
57 Li J, Xu S, Hassan M, et al. Journal of Applied Polymer Science, 2019, 136, 1.
58 Tan P, Chen B, Xu H, et al. Electrochimica Acta, 2018, 283, 1028.
59 Shang W, Yu W, Ma Y, et al. Advanced Materials Interfaces, 2021, 8, 2101256.
60 Wu M, Zhang G, Chen N, et al. Energy Storage Materials, 2020, 24, 272.
61 Zhou Y, Song Y, Zhang S, et al. Journal of Materials Chemistry A, 2020, 8, 13996.
62 Zhong Y, Xu X, Liu P, et al. Advanced Energy Materials, 2020, 10, 2002992.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 耿鑫悦, 杭高庆, 欧长良, 杨小燕. 含孤立四面体基元的AMO4型质子导体的研究进展[J]. 材料导报, 2024, 38(22): 23100129-7.
[3] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[4] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[5] 张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
[6] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[7] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[8] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[9] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[10] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[11] 周存, 秦兆立, 王闻宇, 金欣, 林童, 朱正涛. 动力/储能锂离子电池隔膜制备先进技术及研究进展[J]. 材料导报, 2018, 32(23): 4051-4060.
[12] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[13] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[14] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[15] 张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed